Absolute continuity of the spectrum of the periodic Scrödinger operator in a layer and in a smooth cylinder
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 69-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Schrödinger operator $H=\Delta+V$ in a layer or in a $d$-dimensional cylinder is considered. The function $V$ is suppored to be periodic with respect to some lattice. The absolute continuity of the spectrum of $H$ is established under the following conditions: $V\in L_{p,\mathrm{loc})}$ where $p>d/2$ in the case of a layer, and $p>>\max(d/2,d-2)$ in the case of a cylinder. Bibl. 14 titles.
@article{ZNSL_2010_385_a3,
     author = {I. Kachkovskii and N. Filonov},
     title = {Absolute continuity of the spectrum of the periodic {Scr\"odinger} operator in a~layer and in a~smooth cylinder},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {69--82},
     year = {2010},
     volume = {385},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a3/}
}
TY  - JOUR
AU  - I. Kachkovskii
AU  - N. Filonov
TI  - Absolute continuity of the spectrum of the periodic Scrödinger operator in a layer and in a smooth cylinder
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 69
EP  - 82
VL  - 385
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a3/
LA  - ru
ID  - ZNSL_2010_385_a3
ER  - 
%0 Journal Article
%A I. Kachkovskii
%A N. Filonov
%T Absolute continuity of the spectrum of the periodic Scrödinger operator in a layer and in a smooth cylinder
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 69-82
%V 385
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a3/
%G ru
%F ZNSL_2010_385_a3
I. Kachkovskii; N. Filonov. Absolute continuity of the spectrum of the periodic Scrödinger operator in a layer and in a smooth cylinder. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 41, Tome 385 (2010), pp. 69-82. http://geodesic.mathdoc.fr/item/ZNSL_2010_385_a3/

[1] M. Sh. Birman, T. A. Suslina, “Absolyutnaya nepreryvnost dvumernogo periodicheskogo magnitnogo gamiltoniana s razryvnym vektornym potentsialom”, Algebra i Analiz, 10:4 (1998), 1–36 | MR | Zbl

[2] M. Sh. Birman, T. A. Suslina, “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i Analiz, 11:2 (1999), 1–40 | MR | Zbl

[3] L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator”, J. Phys. A Math. Theor., 42 (2009), 275204 | DOI | MR | Zbl

[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[5] I. V. Kachkovskii, N. D. Filonov, “Absolyutnaya nepreryvnost spektra periodicheskogo operatora Shredingera v mnogomernom tsilindre”, Algebra i Analiz, 21:1 (2009), 133–152 | MR | Zbl

[6] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR

[7] H. F. Smith, C. D. Sogge, “On the $L_p$ norm of spectral clusters for compact manifolds with boundary”, Acta Mathematica, 198:1 (2007), 107–153 | DOI | MR | Zbl

[8] A. V. Sobolev, E. Shargorodsky, “Quasiconformal mappings and periodic spectral problems in dimension two”, J. Anal. Math., 91 (2003), 67–103 | DOI | MR | Zbl

[9] C. D. Sogge, “Concerning the $L^p$ norm of spectral clusters for second-order elliptic operators on compact manifolds”, J. Funct. Anal., 77:1 (1988), 123–138 | DOI | MR | Zbl

[10] T. A. Suslina, “On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer”, Russian J. Math. Phys., 8:4 (2001), 463–486 | MR | Zbl

[11] T. A. Suslina, R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra operatora Shredingera s potentsialom, sosredotochennym na periodicheskoi sisteme giperpoverkhnostei”, Algebra i Analiz, 13:5 (2001), 197–240 | MR | Zbl

[12] T. A. Suslina, R. G. Shterenberg, “Absolyutnaya nepreryvnost spektra magnitnogo operatora Shredingera s metrikoi v dvumernom periodicheskom volnovode”, Algebra i Analiz, 14:2 (2002), 159–206 | MR | Zbl

[13] L. Thomas, “Time dependent approach to scattering from impurities in a crystal”, Commun. Math. Phys., 33 (1973), 335–343 | DOI | MR

[14] Z. Shen, “On absolute continuity of the periodic Schrödinger operators”, Intern. Math. Res. Notes, 2001:1 (2001), 1–31 | DOI | MR | Zbl