On delay and asymmetry points of one-dimensional semi-Markov diffusion processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 291-309

Voir la notice de l'article provenant de la source Math-Net.Ru

A homogeneous linear differential equation of the second order is considered. For an open interval where the equation is treated a family of operators of the Dirichlet problem on the set of all subintervals is said to be a generalized semi-group due to its special property. Let the equation has meaning on each of two disjoint intervals with a common boundary point $z$. The extension of the corresponding two semi-groups of operators to a semi-group of operators corresponding to the union of these intervals and the point $z$ is shown to be not unique. It is determined by two arbitrary constants. In order to interpret these arbitrary constants we use a one-dimensional locally Markov diffusion process with special properties of passage of the point $z$. One of these arbitrary constants determines a delay of the process at the point $z$, and the second one induces an asymmetry of the process with respect to $z$. The two extremal meanings of the latter constant, 0 and $\infty$, determine reflection of the process from the point $z$ while going to the point from the left and from the right, respectively. Bibl. 4 titles.
@article{ZNSL_2010_384_a14,
     author = {B. P. Harlamov},
     title = {On delay and asymmetry points of one-dimensional {semi-Markov} diffusion processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {291--309},
     publisher = {mathdoc},
     volume = {384},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a14/}
}
TY  - JOUR
AU  - B. P. Harlamov
TI  - On delay and asymmetry points of one-dimensional semi-Markov diffusion processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 291
EP  - 309
VL  - 384
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a14/
LA  - ru
ID  - ZNSL_2010_384_a14
ER  - 
%0 Journal Article
%A B. P. Harlamov
%T On delay and asymmetry points of one-dimensional semi-Markov diffusion processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 291-309
%V 384
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a14/
%G ru
%F ZNSL_2010_384_a14
B. P. Harlamov. On delay and asymmetry points of one-dimensional semi-Markov diffusion processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 16, Tome 384 (2010), pp. 291-309. http://geodesic.mathdoc.fr/item/ZNSL_2010_384_a14/