Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 82-103

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A=D_A+B$ be a block $r\times r$, $r\ge2$, Hermitian matrix of order $n$, where $D_A$ is the block diagonal part of $A$. The main results of the paper are Theorems 2.1 and 2.2, which state the sharp inequalities $$ \lambda_1(A)\ge\lambda_1(D_A+\xi B)\quad\text{and}\quad\lambda_n(A)\le\lambda_n(D_A+\xi B),\qquad-\frac1{r-1}\le\xi\le1, $$ and analyze the equality cases. Some implications of these results are indicated. As applications, matrices occurring in spectral graph theory are considered, and new lower bounds on the chromatic number of a graph are obtained. Bibl. 7 titles.
@article{ZNSL_2010_382_a7,
     author = {L. Yu. Kolotilina},
     title = {Inequalities for the extreme eigenvalues of block-partitioned {Hermitian} matrices with applications to spectral graph theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--103},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 82
EP  - 103
VL  - 382
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/
LA  - ru
ID  - ZNSL_2010_382_a7
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 82-103
%V 382
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/
%G ru
%F ZNSL_2010_382_a7
L. Yu. Kolotilina. Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 82-103. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/