Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 82-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $A=D_A+B$ be a block $r\times r$, $r\ge2$, Hermitian matrix of order $n$, where $D_A$ is the block diagonal part of $A$. The main results of the paper are Theorems 2.1 and 2.2, which state the sharp inequalities 
$$
\lambda_1(A)\ge\lambda_1(D_A+\xi B)\quad\text{and}\quad\lambda_n(A)\le\lambda_n(D_A+\xi B),\qquad-\frac1{r-1}\le\xi\le1,
$$
and analyze the equality cases. Some implications of these results are indicated. As applications, matrices occurring in spectral graph theory are considered, and new lower bounds on the chromatic number of a graph are obtained. Bibl. 7 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_382_a7,
     author = {L. Yu. Kolotilina},
     title = {Inequalities for the extreme eigenvalues of block-partitioned {Hermitian} matrices with applications to spectral graph theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--103},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/}
}
                      
                      
                    TY - JOUR AU - L. Yu. Kolotilina TI - Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 82 EP - 103 VL - 382 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/ LA - ru ID - ZNSL_2010_382_a7 ER -
%0 Journal Article %A L. Yu. Kolotilina %T Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 82-103 %V 382 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/ %G ru %F ZNSL_2010_382_a7
L. Yu. Kolotilina. Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 82-103. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a7/