Dynamic proper vertex colorings of the graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 47-77
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let a subdivision of the complete graph $K_n$ be any graph, which can be constructed from $K_n$ by substituting some edges of $K_n$ with chains of two edges (every such chain adds to a graph a new vertex of degree 2). Let $d\ge8$, $G$ is a connected graph with maximal vertex degree $d$. We proof that there is a proper dynamic vertex coloring of $G$ with $d$ colors iff $G$ is distinct from $K_{d+1}$ and its subdivisions. Bibl. 7 titles.
@article{ZNSL_2010_381_a2,
     author = {D. V. Karpov},
     title = {Dynamic proper vertex colorings of the graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--77},
     year = {2010},
     volume = {381},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a2/}
}
TY  - JOUR
AU  - D. V. Karpov
TI  - Dynamic proper vertex colorings of the graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 47
EP  - 77
VL  - 381
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a2/
LA  - ru
ID  - ZNSL_2010_381_a2
ER  - 
%0 Journal Article
%A D. V. Karpov
%T Dynamic proper vertex colorings of the graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 47-77
%V 381
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a2/
%G ru
%F ZNSL_2010_381_a2
D. V. Karpov. Dynamic proper vertex colorings of the graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 47-77. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a2/

[1] R. L. Brooks, “On coloring the nodes of network”, Proc. Cambridge Philos. Soc., 37 (1941), 194–197 | DOI | MR | Zbl

[2] F. Kharari, Teoriya grafov, Mir, M., 1973 ; F. Harary, Graph theory, 1969 | MR | MR

[3] H. Hind, M. Molloy, B. Reed, “Colouring a graph frugally”, Combinatorica, 17:4 (1997), 469–482 | DOI | MR | Zbl

[4] B. Reed, “A strengthening of Brooks' theorem”, J. Combin. Theory Ser. B, 76:2 (1999), 136–149 | DOI | MR | Zbl

[5] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976 | MR

[6] H.-J. Lui, B. Montgomery, H. Poon, “Upper bounds of dynamic chromatic number”, Ars Combinatoria, 68 (2003), 193–201 | MR

[7] N. V. Gravin, “Nevyrozhdennye raskraski v teoreme Bruksa”, Diskretnaya matematika, 21:4 (2009), 106–128 | DOI