Construction of a~spanning tree with many leaves
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 31-46

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known [4] that any $n$ vertex graph of minimal degree 4 possess a spanning tree with at least $\frac25\cdot n$ vertices, which is asymptotically sharp bound. In current work we present a polynomial algorithm that finds in a graph with $k$ vertices of degree at least four and $k'$ vertices of degree 3 a spanning tree with the number of leaves at least $\lceil\frac25\cdot k+\frac2{15}\cdot k'\rceil$. Bibl. 13 titles.
@article{ZNSL_2010_381_a1,
     author = {N. V. Gravin},
     title = {Construction of a~spanning tree with many leaves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--46},
     publisher = {mathdoc},
     volume = {381},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/}
}
TY  - JOUR
AU  - N. V. Gravin
TI  - Construction of a~spanning tree with many leaves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 31
EP  - 46
VL  - 381
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/
LA  - ru
ID  - ZNSL_2010_381_a1
ER  - 
%0 Journal Article
%A N. V. Gravin
%T Construction of a~spanning tree with many leaves
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 31-46
%V 381
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/
%G ru
%F ZNSL_2010_381_a1
N. V. Gravin. Construction of a~spanning tree with many leaves. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 31-46. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/