Construction of a spanning tree with many leaves
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 31-46
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known [4] that any $n$ vertex graph of minimal degree 4 possess a spanning tree with at least $\frac25\cdot n$ vertices, which is asymptotically sharp bound. In current work we present a polynomial algorithm that finds in a graph with $k$ vertices of degree at least four and $k'$ vertices of degree 3 a spanning tree with the number of leaves at least $\lceil\frac25\cdot k+\frac2{15}\cdot k'\rceil$. Bibl. 13 titles.
@article{ZNSL_2010_381_a1,
     author = {N. V. Gravin},
     title = {Construction of a~spanning tree with many leaves},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--46},
     year = {2010},
     volume = {381},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/}
}
TY  - JOUR
AU  - N. V. Gravin
TI  - Construction of a spanning tree with many leaves
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 31
EP  - 46
VL  - 381
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/
LA  - ru
ID  - ZNSL_2010_381_a1
ER  - 
%0 Journal Article
%A N. V. Gravin
%T Construction of a spanning tree with many leaves
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 31-46
%V 381
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/
%G ru
%F ZNSL_2010_381_a1
N. V. Gravin. Construction of a spanning tree with many leaves. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 31-46. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a1/

[1] V. G. Vizing, “Nekotorye nereshennye zadachi v teorii grafov”, Uspekhi mat. nauk, 23:6 (1968), 117–134 | MR | Zbl

[2] B. Zelinka, “Finding a Spanning Tree of a Graph with Maximal Number of Terminal Vertices”, Kybernetika, 9:5 (1973), 357–360 | MR | Zbl

[3] J. A. Storer, “Constructing full spanning trees for cubic graphs”, Inform. Process. Lett., 13:1 (1981), 8–11 | DOI | MR | Zbl

[4] J. R. Griggs, M. Wu, “Spanning trees in graphs of minimum degree 4 or 5”, Discreet Mathematics, 104 (1992), 167–183 | DOI | MR | Zbl

[5] D. J. Kleitman, D. B. West, “Spanning trees with many leaves”, SIAM J. Discrete Math., 4:1 (1991), 99–106 | DOI | MR | Zbl

[6] P. S. Bonsma, T. Brueggermann, G. J. Woenginger, “A faster FPT algorithm for finding spanning trees with many leaves”, Lect. Notes Computer Sci., 2747, 2003, 259–268 | DOI | MR | Zbl

[7] F. V. Fomin, F. Grandoni, D. Kratsch, “Solving Connected Dominating Set Faster than $O(2^n)$”, Algorithmica, 52 (2008), 153–166 | DOI | MR | Zbl

[8] M. R. Fellows, C. McCartin, F. A. Rasamond, U. Stege, “Coordinated kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems”, Lect. Notes Comput. Sci., 1974, 2000, 240–251 | DOI | MR | Zbl

[9] G. Galbiati, A. Morzenti, F. Maffioli, “On the approximability of some maximum spanning tree problems”, Theoretical Computer Scinece, 181 (1997), 107–118 | DOI | MR | Zbl

[10] N. Linial, D. Sturtevant, Neobublikovannyi rezultat, 1987 | Zbl

[11] N. Alon, “Transversal numbers of uniform hypergraphs”, Graphs and Combinatorics, 6 (1990), 1–4 | DOI | MR

[12] Y. Caro, D. B. West, R. Yuster, “Connected domination and spanning trees with many leaves”, SIAM J. Discrete Math., 13 (2000), 202–211 | DOI | MR

[13] N. Alon, J. Spencer, The Probabilistic Method, Second Edition, Wiley, NY, 2000 | MR | Zbl