Chromatic numbers of layered graphs with bounded maximal clique
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 5-30
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A graph is called $n$-layered if the set of its vertices is a union of pairwise nonintersected $n$-cliques. We estimate chromatic numbers of $n$-layered graphs without $(n+1)$-cliques. Bibl. 10 titles.
@article{ZNSL_2010_381_a0,
     author = {S. L. Berlov},
     title = {Chromatic numbers of layered graphs with bounded maximal clique},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--30},
     year = {2010},
     volume = {381},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/}
}
TY  - JOUR
AU  - S. L. Berlov
TI  - Chromatic numbers of layered graphs with bounded maximal clique
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 30
VL  - 381
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/
LA  - ru
ID  - ZNSL_2010_381_a0
ER  - 
%0 Journal Article
%A S. L. Berlov
%T Chromatic numbers of layered graphs with bounded maximal clique
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-30
%V 381
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/
%G ru
%F ZNSL_2010_381_a0
S. L. Berlov. Chromatic numbers of layered graphs with bounded maximal clique. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/

[1] R. L. Brooks, “On coloring the nodes of a network”, Proc. Cambrige Phil. Soc., 37 (1941), 194–197 | DOI | MR | Zbl

[2] B. Reed, “A strengthening of Brooks' theorem”, J. Combin. Theory Series B, 76:2 (1999), 136–149 | DOI | MR | Zbl

[3] A. V. Kostochka, “Degree, density, and chromatic number of graphs”, Metody Diskret. Analiz, 35 (1980), 45–70, 104–105 | MR | Zbl

[4] N. Alon, “The strong chromatic number of a graph”, Random Struct. Alg., 3 (1992), 1–7 | DOI | MR | Zbl

[5] P. E. Haxell, “On the strong chromatic number”, Combin. Probab. Comput., 13:6 (2004), 857–865 | DOI | MR | Zbl

[6] V. L. Dolnikov, “Ob odnoi zadache okrashivaniya”, Sib. mat. zhurn., 13:6 (1972), 1272–1281 | MR

[7] P. Erdős, “Some remarks on the theory of graphs”, Bull. Amer. Math. Soc., 53 (1947), 292–294 | DOI | MR | Zbl

[8] R. L. Graham, B. L. Rothschild, J. H. Spencer, Ramsey Theory, Second Edition, John Wiley and Sons, Inc., 1990 | MR | Zbl

[9] E. A. Nordhaus, “On the density and chromatic numbers of graphs”, Lect. Notes Math., 110, 1969, 245–249 | DOI | MR | Zbl

[10] K. Schurger, “Inequalities for the chromatic numbers of graphs”, J. Combin. Theory Series B, 16:1 (1974), 77–85 | DOI | MR | Zbl