Chromatic numbers of layered graphs with bounded maximal clique
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 5-30

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph is called $n$-layered if the set of its vertices is a union of pairwise nonintersected $n$-cliques. We estimate chromatic numbers of $n$-layered graphs without $(n+1)$-cliques. Bibl. 10 titles.
@article{ZNSL_2010_381_a0,
     author = {S. L. Berlov},
     title = {Chromatic numbers of layered graphs with bounded maximal clique},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--30},
     publisher = {mathdoc},
     volume = {381},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/}
}
TY  - JOUR
AU  - S. L. Berlov
TI  - Chromatic numbers of layered graphs with bounded maximal clique
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 30
VL  - 381
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/
LA  - ru
ID  - ZNSL_2010_381_a0
ER  - 
%0 Journal Article
%A S. L. Berlov
%T Chromatic numbers of layered graphs with bounded maximal clique
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-30
%V 381
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/
%G ru
%F ZNSL_2010_381_a0
S. L. Berlov. Chromatic numbers of layered graphs with bounded maximal clique. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/