Chromatic numbers of layered graphs with bounded maximal clique
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 5-30
Voir la notice de l'article provenant de la source Math-Net.Ru
A graph is called $n$-layered if the set of its vertices is a union of pairwise nonintersected $n$-cliques. We estimate chromatic numbers of $n$-layered graphs without $(n+1)$-cliques. Bibl. 10 titles.
@article{ZNSL_2010_381_a0,
author = {S. L. Berlov},
title = {Chromatic numbers of layered graphs with bounded maximal clique},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--30},
publisher = {mathdoc},
volume = {381},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/}
}
S. L. Berlov. Chromatic numbers of layered graphs with bounded maximal clique. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 5-30. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a0/