The point spectrum of water-wave problem in intersecting canals
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 110-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Trapped modes are examined on the water surface in two canals which intersect each other at the right angle and have the same symmetric cross-section. These trapped modes correspond to eigenvalues embedded into the continuous spectrum of the Steklov boundary value problem, decay exponentially at infinity, i.e., are localized near the crossing of the canals. A sufficient condition is presented for the existence of such trapped waves. The effect is discussed of the concentration of eigenvalues under a perturbation in the vicinity of the canals crossing by means of the formation of a shoal, a thin water layer. A condensed review of known results on curved, cranked and branched waveguides is given and open questions are formulated. Bibl. 24 titles.
@article{ZNSL_2010_380_a6,
     author = {S. A. Nazarov},
     title = {The point spectrum of water-wave problem in intersecting canals},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--131},
     year = {2010},
     volume = {380},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a6/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - The point spectrum of water-wave problem in intersecting canals
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 110
EP  - 131
VL  - 380
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a6/
LA  - ru
ID  - ZNSL_2010_380_a6
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T The point spectrum of water-wave problem in intersecting canals
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 110-131
%V 380
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a6/
%G ru
%F ZNSL_2010_380_a6
S. A. Nazarov. The point spectrum of water-wave problem in intersecting canals. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 110-131. http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a6/

[1] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[2] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007

[3] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[4] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl

[5] S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Dokl. RAN, 429:6 (2009), 746–749 | MR | Zbl

[6] S. A. Nazarov, “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 348, 2007, 99–126

[7] M. D. Groves, “On the existence of trapped modes in channels of arbitrary cross-sections”, Math. Meth. Appl. Sci., 20 (1997), 521–545 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29 | DOI | MR | Zbl

[9] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka., M., 1991

[10] F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503 | MR

[11] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 | DOI | MR | Zbl

[12] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl

[13] A.-S. Bonnet-Bendhia, J. Duterte, P. Joly, “Mathematical analysis of elastic surface waves in topographic waveguides”, Mathematical Models and Methods in Applied Science, 9:5 (1999), 755–798 | DOI | MR

[14] N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface–piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl

[15] I. V. Kamotskii, S. A. Nazarov, “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 | MR | Zbl

[16] I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl

[17] S. A. Nazarov, “A novel approach for detecting trapped surface waves in a canal with periodic underwater topography”, C. R. Mecanique, 337:8 (2009), 610–615 | DOI

[18] S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 369, 2009, 202–223

[19] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR

[20] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR

[21] R. L. Shult, D. G. Ravenhall, H. D. Wyld, “Quamtum bound states in a classically unbounded system of crossed wires”, Phys. Rev. B, 39:8 (1989), 5476–5479 | DOI

[22] Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 | DOI

[23] P. Duclos, P. Exner, “Curvature-induced bound sttes in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[24] S. A. Nazarov, “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz (to appear)