@article{ZNSL_2010_380_a6,
author = {S. A. Nazarov},
title = {The point spectrum of water-wave problem in intersecting canals},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--131},
year = {2010},
volume = {380},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a6/}
}
S. A. Nazarov. The point spectrum of water-wave problem in intersecting canals. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 110-131. http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a6/
[1] N. Kuznetsov, V. Maz'ya, B. Vainberg, Linear Water Waves, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[2] D. A. Indeitsev, N. G. Kuznetsov, O. V. Motygin, Yu. A. Mochalova, Lokalizatsiya lineinykh voln, Izd-vo S.-Peterb. un-ta, SPb., 2007
[3] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[4] S. A. Nazarov, “Kontsentratsiya lovushechnykh mod v zadachakh lineinoi teorii voln na poverkhnosti zhidkosti”, Mat. sb., 199:12 (2008), 53–78 | DOI | MR | Zbl
[5] S. A. Nazarov, “Prostoi sposob obnaruzheniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Dokl. RAN, 429:6 (2009), 746–749 | MR | Zbl
[6] S. A. Nazarov, “O sguschenii tochechnogo spektra na nepreryvnom v zadachakh lineinoi teorii voln na poverkhnosti idealnoi zhidkosti”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 348, 2007, 99–126
[7] M. D. Groves, “On the existence of trapped modes in channels of arbitrary cross-sections”, Math. Meth. Appl. Sci., 20 (1997), 521–545 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[8] C. M. Linton, P. McIver, “Embedded trapped modes in water waves and acoustics”, Wave motion, 45 (2007), 16–29 | DOI | MR | Zbl
[9] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka., M., 1991
[10] F. Ursell, “Mathematical aspects of trapping modes in the theory of surface waves”, J. Fluid Mech., 18 (1988), 495–503 | MR
[11] D. S. Jones, “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 | DOI | MR | Zbl
[12] D. V. Evans, M. Levitin, D. Vasil'ev, “Existence theorems for trapped modes”, J. Fluid Mech., 261 (1994), 21–31 | DOI | MR | Zbl
[13] A.-S. Bonnet-Bendhia, J. Duterte, P. Joly, “Mathematical analysis of elastic surface waves in topographic waveguides”, Mathematical Models and Methods in Applied Science, 9:5 (1999), 755–798 | DOI | MR
[14] N. Kuznetsov, R. Porter, D. V. Evans, M. J. Simon, “Uniqueness and trapped modes for surface–piercing cylinders in oblique waves”, J. Fluid Mech., 365 (1998), 351–368 | DOI | MR | Zbl
[15] I. V. Kamotskii, S. A. Nazarov, “Uprugie volny, lokalizovannye okolo periodicheskikh semeistv defektov”, Dokl. RAN, 368:6 (1999), 771–773 | MR | Zbl
[16] I. V. Kamotskii, S. A. Nazarov, “Eksponentsialno zatukhayuschie resheniya zadachi o difraktsii na zhestkoi periodicheskoi reshetke”, Matem. zametki, 73:1 (2003), 138–140 | DOI | MR | Zbl
[17] S. A. Nazarov, “A novel approach for detecting trapped surface waves in a canal with periodic underwater topography”, C. R. Mecanique, 337:8 (2009), 610–615 | DOI
[18] S. A. Nazarov, “Dostatochnye usloviya poyavleniya lovushechnykh mod v zadachakh lineinoi teorii poverkhnostnykh voln”, Zap. nauch. semin. peterburg. otd-niya mat. in-ta RAN, 369, 2009, 202–223
[19] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, izd-vo Leningr. un-ta, L., 1980 | MR
[20] S. A. Nazarov, “Properties of spectra of boundary value problems in cylindrical and quasicylindrical domain”, Sobolev Spaces in Mathematics, v. II, International Mathematical Series, 9, ed. Maz'ya V., 2008, 261–309 | DOI | MR
[21] R. L. Shult, D. G. Ravenhall, H. D. Wyld, “Quamtum bound states in a classically unbounded system of crossed wires”, Phys. Rev. B, 39:8 (1989), 5476–5479 | DOI
[22] Y. Avishai, D. Bessis, B. G. Giraud, G. Mantica, “Quantum bound states in open geometries”, Phys. Rev. B, 44:15 (1991), 8028–8034 | DOI
[23] P. Duclos, P. Exner, “Curvature-induced bound sttes in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl
[24] S. A. Nazarov, “Diskretnyi spektr kolenchatykh, razvetvlyayuschikhsya i periodicheskikh volnovodov”, Algebra i analiz (to appear)