Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero)
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 133-170

Voir la notice de l'article provenant de la source Math-Net.Ru

We suggest a model of representation of algebraic varieties based on representative systems of points of their irreducible components. Deterministic polynomial-time algorithms that substantiate this model are described in characteristic zero. The main result here is a construction of the intersection of algebraic varieties. As applications, we obtain efficient algorithms for constructing the smooth stratification and smooth cover of an algebraic variety suggested by the author earlier. Bibl. 16 titles.
@article{ZNSL_2010_378_a9,
     author = {A. L. Chistov},
     title = {Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--170},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/}
}
TY  - JOUR
AU  - A. L. Chistov
TI  - Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero)
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 133
EP  - 170
VL  - 378
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/
LA  - ru
ID  - ZNSL_2010_378_a9
ER  - 
%0 Journal Article
%A A. L. Chistov
%T Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero)
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 133-170
%V 378
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/
%G ru
%F ZNSL_2010_378_a9
A. L. Chistov. Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero). Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 133-170. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/