Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero)
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 133-170
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We suggest a model of representation of algebraic varieties based on representative systems of points of their irreducible components. Deterministic polynomial-time algorithms that substantiate this model are described in characteristic zero. The main result here is a construction of the intersection of algebraic varieties. As applications, we obtain efficient algorithms for constructing the smooth stratification and smooth cover of an algebraic variety suggested by the author earlier. Bibl. 16 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_378_a9,
     author = {A. L. Chistov},
     title = {Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero)},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--170},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/}
}
                      
                      
                    TY - JOUR AU - A. L. Chistov TI - Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero) JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 133 EP - 170 VL - 378 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/ LA - ru ID - ZNSL_2010_378_a9 ER -
A. L. Chistov. Polynomial-time algorithms for a~new model of representation of algebraic varieties (in characteristic zero). Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 133-170. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a9/