Duality in the theory of finite commutative multivalued groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 184-227
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of this paper is to construct a duality theory for finite commutative multivalued groups and to demonstrate its connection with the classical duality in the theory of ordinary groups and the Kawada–Delsarte duality in algebraic combinatorics. We study in detail the case of multivalued groups of order three, construct a parameterization of the set of these groups, and obtain explicit formulas for the duality. In future, we plan to use this duality in the study of the coset problem. Bibl. 26 titles.
@article{ZNSL_2010_378_a11,
     author = {P. V. Yagodovsky},
     title = {Duality in the theory of finite commutative multivalued groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {184--227},
     year = {2010},
     volume = {378},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a11/}
}
TY  - JOUR
AU  - P. V. Yagodovsky
TI  - Duality in the theory of finite commutative multivalued groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 184
EP  - 227
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a11/
LA  - ru
ID  - ZNSL_2010_378_a11
ER  - 
%0 Journal Article
%A P. V. Yagodovsky
%T Duality in the theory of finite commutative multivalued groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 184-227
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a11/
%G ru
%F ZNSL_2010_378_a11
P. V. Yagodovsky. Duality in the theory of finite commutative multivalued groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 184-227. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a11/

[1] E. Bannai, T. Ito, Algebraicheskaya kombinatorika. Skhemy i otnosheniya, Mir, M., 1987 | MR

[2] H. I. Blau, “Table algebras”, European J. Combin., 30 (2009), 1426–1455 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, “Funktsionalnye uravneniya, assotsiirovannye s teoremami slozheniya dlya ellipticheskikh funktsii, i dvuznachnye algebraicheskie gruppy”, Uspekhi mat. nauk, 45:3 (1990), 185–186 | MR | Zbl

[4] V. M. Bukhshtaber, A. M. Vershik, S. A. Evdokimov, I. N. Ponomarenko, “Kombinatornye algebry i mnogoznachnye gruppy”, Funkts. anal. i ego pril., 30:3 (1996), 12–18 | DOI | MR | Zbl

[5] V. M. Bukhshtaber, E. G. Riss, “Mnogoznachnye gruppy i $n$-algebry Khopfa”, Uspekhi mat nauk, 51:4 (1996), 149–150 | DOI | MR | Zbl

[6] V. M Buchstaber, E. G. Rees, “Multivalued groups, their representations and Hopf algebras”, Transform. Groups, 2:4 (1997), 325–349 | DOI | MR | Zbl

[7] V. M. Buchstaber, E. G. Rees, “Multivalued groups, $n$-Hopf algebras and $n$-ring homomorphisms”, Lie groups and Lie Algebras, Kluwer Acad. Publ., 1998, 85–107 | DOI | MR | Zbl

[8] V. M. Buchshtaber, A. P. Veselov, “Integrable correspondences and algebraic representations of multivalued groups”, Internat. Math. Res. Notices, 8 (1996), 381–400 | DOI | MR

[9] V. M. Buchstaber, M. I. Monastyrsky, “Generalized Kramers–Wannier duality for spin systems with noncommutative symmetry”, J. Phys. A, 36:28 (2003), 7679–7692 | DOI | MR | Zbl

[10] V. M. Buchstaber, “$n$-Valued groups: theory and applications”, Moscow Math. J., 6:1 (2006), 57–84 | MR | Zbl

[11] V. M. Bukhshtaber, A. A. Gaifullin, “Predstavleniya $m$-znachnykh grupp na triangulyatsiyakh mnogoobrazii”, Uspekhi mat. nauk, 61:3 (2006), 171–172 | DOI | MR | Zbl

[12] A. M. Vershik, “Dvoistvennost Kreina, pozitivnye 2-algebry i dilatatsiya koumnozhenii”, Funkts. anal. i ego pril., 41:2 (2007), 24–43 | DOI | MR | Zbl

[13] V. Dragovich, M. Radnovich, Integriruemye billiardy, kvadriki i mnogomernye porizmy Ponsele, NITs RKhD, Izhevsk, 2010

[14] V. Dragovic, “Multi-valued hyperelliptic continued fractions of generalized Halphen type”, Internat. Math. Res. Notices, 2009, no. 10, 1891–1932 | MR | Zbl

[15] V. Dragovic, “Geometrization and Generalization of the Kowalevski top”, Comm. Math. Phys., 298:1 (2010), 37–64, arXiv: 0912.3027 | DOI | MR | Zbl

[16] V. Dragovic, Marden theorem and Poncelet–Darboux curves, arXiv: 0812.4829v1

[17] S. Evdokimov, I. Ponomarenko, “Permutation group approach to association schemes”, European J. Combin., 30 (2009), 1456–1446 | DOI | MR

[18] G. Mazzola, “The algebraic and geometric classification of associative algebras of dimension five”, Manuscripta Math., 27 (1979), 81–101 | DOI | MR | Zbl

[19] P. V. Yagodovskii, “Deformatsii mnogoznachnykh grupp”, Uspekhi mat. nauk, 52:3 (1997), 179–180 | DOI | MR | Zbl

[20] P. V. Yagodovskii, “Odnorodnye deformatsii diskretnykh grupp”, Zap. nauchn. semin. POMI, 266, 2000, 330–335 | MR | Zbl

[21] P. V. Yagodovskii, “Lineinaya deformatsiya diskretnykh grupp i konstruktsii mnogoznachnykh grupp”, Izv. RAN, ser. mat., 64:5 (2000), 197–224 | DOI | MR | Zbl

[22] P. V. Yagodovskii, “Predstavleniya mnogoznachnykh grupp na grafakh”, Uspekhi mat. nauk, 57:1 (2002), 143–144 | DOI | MR | Zbl

[23] P. V. Yagodovskii, “Bikosetnye gruppy i simmetricheskie grafy”, Zap. nauchn. semin. POMI, 292, 2002, 161–174 | MR | Zbl

[24] P. V. Yagodovskii, “$\sigma$-Rasshireniya mnogoznachnykh grupp”, Zap. nauchn. semin. POMI, 325, 2005, 225–242 | MR | Zbl

[25] A. A. Gaifullin, P. V. Yagodovskii, “Ob integriruemosti $m$-znachnykh dinamik pri pomoschi odnoporozhdënnykh $m$-znachnykh grupp”, Uspekhi mat. nauk, 62:1 (2007), 201–202 | DOI | MR | Zbl

[26] P. V. Yagodovskii, “Dvoistvennye mnogoznachnye gruppy”, Uspekhi mat. nauk, 64:5 (2009), 183–184 | DOI | MR | Zbl