@article{ZNSL_2010_377_a10,
author = {Yu. Matiyasevich},
title = {Towards finite-fold {Diophantine} representations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--90},
year = {2010},
volume = {377},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a10/}
}
Yu. Matiyasevich. Towards finite-fold Diophantine representations. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 78-90. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a10/
[1] A. Baker, H. Davenport,, “The equations $3x^2-2=y^2$ and $8x^2-7=z^2$”, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129–137 | DOI | MR | Zbl
[2] G. Chaitin, Algorithmic Information Theory, Cambridge University Press, Cambridge, England, 1987 | MR | Zbl
[3] G. V. Chudnovskii, Nekotorye algoritmicheskie problemy, Preprint IM-71-3, AN Ukr. SSR, Institut Matematiki, Kiev, 1971
[4] G. V. Chudnovsky, “Some Diophantine problems”, Contributions to the theory of transcendental numbers, Math. Surveys Monogr., 19, Amer. Math. Soc., Providence, RI, 1984, 265–295 | DOI | MR
[5] M. Davis, “Arithmetical problems and recursively enumerable predicates”, J. Symbolic Logic, 18:1 (1953), 33–41 | DOI | MR | Zbl
[6] M. Davis, H. Putnam, J. Robinson, “The decision problem for exponential Diophantine equations”, Ann. Math. (2), 74 (1961), 425–436 ; reprinted in: S. Feferman (ed.), The collected works of Julia Robinson, Collected Works, v. 6, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl | MR
[7] M. Davis, “One equation to rule them all”, Transactions of the New York Academy of Sciences. Series II, 30:6 (1968), 766–773 | DOI | Zbl
[8] M. Davis, “On the number of solutions of Diophantine equations”, Proc. Amer. Math. Soc., 35 (1972), 552–554 | DOI | MR | Zbl
[9] O. Herrman, “A nontrivial solution of the Diophantine equation $9(x^2+7y^2)^2-7(u^2+7v^2)^2=2$”, Computers in Number Theory, eds. A. O. L. Atkin, B. J. Birch, Academic Press, London, 1971, 207–212 | MR | Zbl
[10] Mathematical Developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics, 28, ed. Browder Ed., American Mathematical Society, 1976, 1–34 | MR | Zbl
[11] J. P. Jones, Yu. V. Matijasevič, “A new representation for the symmetric binomial coefficient and its applications”, Annales Sci. Mathém. du Québec, 6:1 (1982), 81–97 | MR | Zbl
[12] E. E. Kummer, “Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen”, J. reine angew. Math., 44 (1852), 93–146 | DOI | Zbl
[13] D. H. Lehmer, “Continued fractions containing arithmetic progressions”, Scripta Math., 29 (1973), 17–24 | MR | Zbl
[14] H. Levitz, “Decidability of some problem pertaining to base 2 exponential Diophantine equations”, Zeitschrift Math. Logik Grundlagen Math., 31:2 (1985), 109–115 | DOI | MR | Zbl
[15] “Enumerable sets are Diophantine”, Soviet Math. Dokl., 11 (1970), 354–358 | Zbl
[16] “Existence of noneffectivizable estimates in the theory of exponential Diophantine equations”, J. of Soviet Mathematics, 8:3 (1977), 299–311 | DOI | MR | Zbl | Zbl
[17] “Algorithmic unsolvability of exponential Diophantine equations in three unknowns”, Sel. Math. Sov., 3 (1984), 223–232 | MR | Zbl
[18] Yu. V. Matiyasevich, Desyataya problema Gilberta, Nauka, Fizmatlit, Moskva, 1993 ; English translation: Hilbert's Tenth Problem, MIT Press, Cambridge (Massachusetts)–London, 1993 ; French translation: Le dixième Problème de Hilbert, Masson, Paris–Milan–Barselone, 1995; http://logic.pdmi.ras.ru/~yumat/H10Pbook | MR | Zbl | Zbl
[19] Yu. Matiyasevich, “Diophantine flavor of Kolmogorov complexity”, Trans. Inst. Informatics and Automation Problems National Acad. Sciences of Armenia, 27 (2006), 111–122
[20] J. Mc Laughlin, “Some new families of Tasoevian and Hurwitzian continued fractions”, Acta Arith., 135:3 (2008), 247–268 | DOI | MR | Zbl
[21] T. Ord, T. D. Kieu, “On the existence of a new family of Diophantine equations for $\Omega$”, Fundam. Inform., 56:3 (2003), 273–284 | MR | Zbl
[22] K. Prasad, “Computability and randomness of Nash equilibrium in infinite games”, J. Mathem. Economics, 20:5 (1991), 429–442 | DOI | MR | Zbl
[23] P. Riyapan, V. Laohakosol, T. Chaichana, “Two types of explicit continued fractions”, Period. Math. Hungar., 52:2 (2006), 51–72 | DOI | MR | Zbl
[24] J. Robinson, “Existential definability in arithmetic”, Transactions of the American Mathematical Society, 72 (1952), 437–449 ; reprinted in: The Collected Works of Julia Robinson, Collected Works, 6, American Mathematical Society, Providence, RI, 1996, 47–59 | DOI | MR | Zbl | MR
[25] D. Shanks, S. S. Wagstaff Jr., “48 more solutions of Martin Davis's quaternary quartic equation”, Math. Comp., 64:212 (1995), 1717–1731 | MR | Zbl
[26] C. Smoryński, “A note on the number of zeros of polynomials and exponential polynomials”, J. Symbolic Logic, 42:1 (1977), 99–106 | DOI | MR | Zbl
[27] B. G. Tasoev, “Ratsionalnye proiblizheniya k nekotorym beskonechnym tsepnym drobyam”, Trudy tbilisskogo universiteta. Mat., mekh., astronom., 24, 1988, 104–138 | MR | Zbl