Towards finite-fold Diophantine representations
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 78-90

Voir la notice de l'article provenant de la source Math-Net.Ru

Celebrated theorem established by Martin Davis, Hilary Putnam, and Julia Robinson in 1961 states that every effectively enumerable set of natural numbers has an exponential Diophantine representation. This theorem was improved by the author in two ways: $\bullet$ to the existence of Diophantine representation, $\bullet$ to the existence of so-called single-fold exponential Diophantine representation. However, it remains unknown whether these two improvements could be combined, that is, whether every effectively enumerable set has a single-fold (or at least finite-fold) Diophantine representation. In the paper, we discuss known results about single-fold exponential Diophantine representations, their applications, possible approaches to improving to the case of genuine Diophantine representations, and what would follow if such improvement is impossible. Bibl. 27 titles.
@article{ZNSL_2010_377_a10,
     author = {Yu. Matiyasevich},
     title = {Towards finite-fold {Diophantine} representations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--90},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a10/}
}
TY  - JOUR
AU  - Yu. Matiyasevich
TI  - Towards finite-fold Diophantine representations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 78
EP  - 90
VL  - 377
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a10/
LA  - en
ID  - ZNSL_2010_377_a10
ER  - 
%0 Journal Article
%A Yu. Matiyasevich
%T Towards finite-fold Diophantine representations
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 78-90
%V 377
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a10/
%G en
%F ZNSL_2010_377_a10
Yu. Matiyasevich. Towards finite-fold Diophantine representations. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 78-90. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a10/