Power series with fast decreasing coefficients
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 167-175

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(x)=\sum_{n=0}^\infty a_nx^n$ be an analytic function in the unit disc such that for some $\lambda>1$, $C_0,C_1,C_2,C_3>0$ we have $$ |f(x)|\le C_0\exp(-C_1|\log(1-x)|^\lambda),\qquad\frac121 $$ and $$|a_n|\le C_2\exp\biggl(-C_3\frac{\sqrt n}{\log(n+2)}\biggr),\qquad n\ge0. $$ Then $f\equiv0$. Bibl. – 5 titles.
@article{ZNSL_2010_376_a6,
     author = {A. M. Chirikov},
     title = {Power series with fast decreasing coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--175},
     publisher = {mathdoc},
     volume = {376},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a6/}
}
TY  - JOUR
AU  - A. M. Chirikov
TI  - Power series with fast decreasing coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 167
EP  - 175
VL  - 376
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a6/
LA  - ru
ID  - ZNSL_2010_376_a6
ER  - 
%0 Journal Article
%A A. M. Chirikov
%T Power series with fast decreasing coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 167-175
%V 376
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a6/
%G ru
%F ZNSL_2010_376_a6
A. M. Chirikov. Power series with fast decreasing coefficients. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 167-175. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a6/