Power series with fast decreasing coefficients
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 167-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $f(x)=\sum_{n=0}^\infty a_nx^n$ be an analytic function in the unit disc such that for 
some $\lambda>1$, $C_0,C_1,C_2,C_3>0$ we have
$$
|f(x)|\le C_0\exp(-C_1|\log(1-x)|^\lambda),\qquad\frac121
$$
and
$$|a_n|\le C_2\exp\biggl(-C_3\frac{\sqrt n}{\log(n+2)}\biggr),\qquad n\ge0.
$$
Then $f\equiv0$. Bibl. – 5 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_376_a6,
     author = {A. M. Chirikov},
     title = {Power series with fast decreasing coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--175},
     publisher = {mathdoc},
     volume = {376},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a6/}
}
                      
                      
                    A. M. Chirikov. Power series with fast decreasing coefficients. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 167-175. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a6/