More variations on decomposition of transvections
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 32-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of decomposition of unipotents consists in writing elementary matrices as products of factors lying in proper parabolic subgroups, whose images under inner automorphisms also fall into proper parabolic subgroups of certain types. For the general linear group this method was first proposed by Stepanov in 1987 to simplify the proof of Suslin's normality theorem. Soon thereafter Vavilov and Plotkin generalised it to other classical groups and Chevalley groups. Subsequently, many further results of that type have been discovered. In the present paper we describe new versions of decomposition of unipotents, which allow to expand its applicability well beyond the present scope. Here we merely illustrate these ideas for split classical groups, in some simplest cases. Detailed calculations are relegated to subsequent publications. Bibl. – 34 titles.
@article{ZNSL_2010_375_a2,
     author = {N. A. Vavilov and V. G. Kazakevich},
     title = {More variations on decomposition of transvections},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--47},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a2/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - V. G. Kazakevich
TI  - More variations on decomposition of transvections
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 32
EP  - 47
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a2/
LA  - ru
ID  - ZNSL_2010_375_a2
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A V. G. Kazakevich
%T More variations on decomposition of transvections
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 32-47
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a2/
%G ru
%F ZNSL_2010_375_a2
N. A. Vavilov; V. G. Kazakevich. More variations on decomposition of transvections. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 32-47. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a2/

[1] A. S. Ananevskii, N. A. Vavilov, S. S. Sinchuk, “O nadgruppakh $E(m,R)\otimes E(n,R)$”, Zap. nauchn. semin. POMI, 365, 2009, 5–28

[2] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Trudy Mat. In-ta AN SSSR, 165, 1984, 24–42 | MR | Zbl

[3] N. A. Vavilov, Podgruppy rasschepimykh klassicheskikh grupp, Dokt. diss., Leningr. Gos. Un-t, 1987, 1–33

[4] N. A. Vavilov, M. R. Gavrilovich, “$A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipov $E_6$ i $E_7$”, Algebra i Analiz, 16:4 (2004), 54–87 | MR | Zbl

[5] N. A. Vavilov, M. R. Gavrilovich, S. I. Nikolenko, “Stroenie grupp Shevalle: dokazatelstvo iz Knigi”, Zap. nauchn. semin. POMI, 330, 2006, 36–76 | MR | Zbl

[6] N. A. Vavilov, V. G. Kazakevich, “Esche odna variatsiya na temu razlozheniya transvektsii”, Vestn. SPbGU. Ser. 1, 2008, no. 3, 71–74 | Zbl

[7] N. A. Vavilov, V. G. Kazakevich, “Razlozhenie transvektsii dlya avtomorfizmov”, Zap. nauchn. semin. POMI, 365, 2009, 47–62 | Zbl

[8] N. A. Vavilov, S. I. Nikolenko, “$A_2$-dokazatelstvo strukturnykh teorem dlya grupp Shevalle tipa $F_4$”, Algebra i Analiz, 20:4 (2008), 27–63 | MR

[9] N. A. Vavilov, E. Ya. Perelman, “Polivektornoe predstavlenie $\operatorname{GL}_n$”, Zap. nauchn. semin. POMI, 338, 2006, 69–97 | MR | Zbl

[10] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\operatorname{Ep}(2l,R)$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR | Zbl

[11] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\operatorname{EO}(n,R)$”, Algebra i Analiz, 19:2 (2007), 10–51 | MR | Zbl

[12] N. A. Vavilov, E. B. Plotkin, A. V. Stepanov, “Vychisleniya v gruppakh Shevalle nad kommutativnymi koltsami”, Dokl. AN SSSR, 307:4 (1989), 788–791 | MR | Zbl

[13] N. A. Vavilov, A. V. Stepanov, “Standartnaya kommutatsionnaya formula”, Vestn. SPbGU. Ser. 1, 2008, no. 1, 9–14 | MR | Zbl

[14] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta. Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR

[15] I. Z. Golubchik, “O normalnykh delitelyakh ortogonalnoi gruppy nad assotsiativnym koltsom s involyutsiei”, Uspekhi Mat. nauk, 30:6 (1975), 165 | Zbl

[16] I. Z. Golubchik, Normalnye podgruppy lineinykh i unitarnykh grupp nad koltsami, Kand. diss., MGU, 1981, 1–117

[17] I. Z. Golubchik, “O normalnykh delitelyakh lineinykh i unitarnykh grupp nad assotsiativnym koltsom”, Prostranstva nad algebrami i nekotorye voprosy teorii setei, Ufa, 1985, 122–142 | MR

[18] A. Yu. Luzgarev, “O nadgruppakh $E(\mathrm E_6,R)$ i $\mathrm E(\mathrm E_7,R)$ v minimalnykh predstavleniyakh”, Zap. nauchn. semin. POMI, 319, 2004, 216–243 | MR | Zbl

[19] A. V. Stepanov, Usloviya stabilnosti v teorii lineinykh grupp nad koltsami, Kand. diss., LGU, 1987, 1–112

[20] A. Bak, R. Hazrat, N. Vavilov, “Structure of hyperbolic unitary groups. II. Normal subgroups”, Algebra Colloq., 2010 (to appear)

[21] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[22] I. Z. Golubchik, “Isomorphisms of the general linear group $GL_n(R)$, $n\geqslant4$, over an associative ring”, Contemp. Math., 131:1 (1992), 123–136 | DOI | MR | Zbl

[23] A. J. Hahn, O. T. O'Meara, The classical groups and $K$-theory, Springer, Berlin et al., 1989 | MR | Zbl

[24] R. Hazrat, N. Vavilov, “Bak's work on $K$-theory of rings (with an appendix by Max Karoubi)”, J. $K$-Theory, 4:1 (2009), 1–65 | MR | Zbl

[25] V. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 77–108 | DOI | MR

[26] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[27] N. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl

[28] N. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Nonassociative Algebras and Related Topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[29] N. Vavilov, “A third look at weight diagrams”, Rendiconti del Rend. Sem. Mat. Univ. Padova, 204:1 (2000), 201–250 | MR

[30] N. Vavilov, “An $\mathrm A_3$-proof of structure theorems for Chevalley groups of types $\mathrm E_6$ and $\mathrm E_7$”, Int. J. Algebra Comput., 17:5–6 (2007), 1283–1298 | DOI | MR | Zbl

[31] N. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups”, Zap. nauchn. semin. POMI, 373, 2009, 48–72

[32] N. Vavilov, E. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45 (1996), 73–115 | DOI | MR

[33] Zhang, Zuhong, Lower $K$-theory of unitary groups, Doktorarbeit Univ. Belfast, 2007, 1–67

[34] Zhang, Zuhong, “Subnormal structure of nonstable unitary groups over rings”, J. Pure Appl. Algebra, 214:5 (2010), 622–628 | DOI | MR | Zbl