Folded fans and string functions
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 197-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The folded fans $F\Psi$ describe the recursion properties for the weights of integrable highest weight modules $L^\mu$. Being considered simultaneously for the set of string functions $\sigma_s^\mu$ belonging to the fundamental Weyl chamber and corresponding to the same congruence class the system of recursion relations gives rise to an equation that connect the string functions and the power series depending on the multiplicities of the folded fan $F\Psi$ weights. We apply these equations to study the properties of string functions $\sigma_s^\mu$ associated to the integrable modules for affine Lie algebras. New important relations for string functions are thus obtained. The set of folded fans provides a compact and effective tool to study them. Bibl. – 7 titles.
@article{ZNSL_2010_374_a10,
     author = {M. Ilyin and P. Kulish and V. Lyakhovsky},
     title = {Folded fans and string functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {197--212},
     year = {2010},
     volume = {374},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a10/}
}
TY  - JOUR
AU  - M. Ilyin
AU  - P. Kulish
AU  - V. Lyakhovsky
TI  - Folded fans and string functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 197
EP  - 212
VL  - 374
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a10/
LA  - en
ID  - ZNSL_2010_374_a10
ER  - 
%0 Journal Article
%A M. Ilyin
%A P. Kulish
%A V. Lyakhovsky
%T Folded fans and string functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 197-212
%V 374
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a10/
%G en
%F ZNSL_2010_374_a10
M. Ilyin; P. Kulish; V. Lyakhovsky. Folded fans and string functions. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 197-212. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a10/

[1] W. Fulton, J. Harris, Representation theory, A first course, Graduate text in Math., 129, Springer, NY, 1991 | MR | Zbl

[2] V. Kac, Infinite Dimensional Lie Algebras, 3rd edition, Cambridge Univ. Press, 1990 | MR | Zbl

[3] M. Wakimoto, Infinite-Dimensional Lie Algebras, Translations of Mathematical Monographs, 195, Amer. Math. Soc., 2001 | MR | Zbl

[4] M. Wakimoto, Lectures on Infinite-Dimensional Lie Algebra, World Scientific, 2005 | MR | Zbl

[5] V. D. Lyakhovsky, S. Yu. Melnikov, “Recursion relations and branching rules for simple Lie algebras”, J. Phys. A, 29 (1996), 1075–1087 | DOI | MR | Zbl

[6] M. Ilyin, P. Kulish, V. Lyakhovsky, “On a property of branching coefficients for affine Lie algebras”, Algebra Analiz, 21:2 (2009), 52–70 ; arXiv: 0812.2124 | MR

[7] P. Kulish, V. Lyakhovsky, “String functions for affine Lie algebras integrable modules”, SIGMA, 4 (2008), 085 ; arXiv: 0812.2381 | MR | Zbl