@article{ZNSL_2009_373_a5,
author = {V. P. Gerdt},
title = {Algebraically simple involutive differential systems and {Cauchy} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--103},
year = {2009},
volume = {373},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a5/}
}
V. P. Gerdt. Algebraically simple involutive differential systems and Cauchy problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 94-103. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a5/
[1] J. F. Pommaret, Partial Differential Equations and Lie Pseudogroups, Gordon Breach, London, 1978 | MR | Zbl
[2] E. Cartan, Les Systèmes Différentialles Extériers et leurs Applications Géometriques, Hermann, Paris, 1945 | Zbl
[3] M. Kuranishi, “On E. Cartan's prolongation theorem of exterior differential systems”, Amer. J. Math., 79 (1957), 1–47 | DOI | MR | Zbl
[4] R. K. Rashevsky, Geometric theory of partial differential equations, OGIZ, Moscow–Leningrad, 1947 (in Russian) | MR
[5] J. F. Thomas, Differential Systems, AMS Publication, New York, 1937 ; Systems and Roots, The William Byrd Press, Richmond, Virginia, 1962 | Zbl
[6] S. P. Finikov, Cartan's method of exterior forms in differential geometry, OGIZ, Moscow–Leningrad, 1948 (in Russian) | MR | Zbl
[7] V. P. Gerdt, Yu. A. Blinkov, “Involutive Bases of Polynomial Ideals”, Mathematics and Computers in Simulation, 45 (1998), 519–542 ; ; 45, 1998 ; arxiv: math.AC/9912027arxiv: math.AC/9912029 | DOI | MR | DOI | MR | Zbl
[8] V. P. Gerdt, “Involutive Algorithms for Computing Gröbner Bases”, Computational Commutative and Non-Commutative Algebraic Geometry, NATO Science Series, IOS Press, 2005, 199–225 ; arxiv: math.AC/0501111 | MR | Zbl
[9] W. M. Seiler, A Combinatorial Approach to Involution and Delta-Regularity I: Involutive Bases in Polynomial Algebras of Solvable Type, Preprint, Universität Kassel, 2007 | MR
[10] C. Riquier, Les Systèmes d'Equations aux Dérivées Partielles, Gauthier-Villars, Paris, 1910
[11] M. Janet, Leçons sur les Systèmes d'Equations aux Dérivées Partielles, Cahiers Scientifiques, IV, Gauthier-Villars, Paris, 1929 | Zbl
[12] W. Plesken, “Counting solutions of polynomial systems via iterated filtrations”, Arch. Math., 92 (2009), 44–56 | DOI | MR | Zbl
[13] D. Wang, Elimination Methods, Springer, Wien, 2000 | MR
[14] V. P. Gerdt, “On Decomposition of Algebraic PDE Systems into Simple Subsystems”, Acta Appl. Math., 101 (2008), 39–51 | DOI | MR | Zbl
[15] E. Hubert, “Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems”, Symbolic and Numerical Scientific Computation, LNCS, 2630, 2001, 1–39 | MR
[16] V. P. Gerdt, “Completion of Linear Differential Systems to Involution”, Computer Algebra in Scientific Computing, CASC' 99, Springer-Verlag, Berlin, 1999, 115–137 ; arxiv: math.AP/9909114 | MR | Zbl
[17] J. Hadamard, “Sur les problem̀es aux dériveés partielles et leur signification physique”, Princeton University Bulletin, 1902, 49–52