Algebraically simple involutive differential systems and Cauchy problem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 94-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Systems of polynomial-nonlinear partial differential equations (PDEs) possessing certain properties are considered. Such systems studied by American mathematician Thomas in the 30th of the XX-th century and called him (algebraically) simple. Thomas gave a constructive procedure to split an arbitrary system of PDEs into a finite number of simple susbsystems. The class of simple involutive systems of PDEs includes the normal or Kovalewskaya-type systems and Riquier's orthonomic passive systems. This class admits well-posing of the Cauchy problem. We discuss the basic features of the splitting algorithm, completion of simple systems to involution and posing the Cauchy problem. Two illustrative examples are given. Bibl. – 17 titles.
@article{ZNSL_2009_373_a5,
     author = {V. P. Gerdt},
     title = {Algebraically simple involutive differential systems and {Cauchy} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {94--103},
     year = {2009},
     volume = {373},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a5/}
}
TY  - JOUR
AU  - V. P. Gerdt
TI  - Algebraically simple involutive differential systems and Cauchy problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 94
EP  - 103
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a5/
LA  - en
ID  - ZNSL_2009_373_a5
ER  - 
%0 Journal Article
%A V. P. Gerdt
%T Algebraically simple involutive differential systems and Cauchy problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 94-103
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a5/
%G en
%F ZNSL_2009_373_a5
V. P. Gerdt. Algebraically simple involutive differential systems and Cauchy problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 94-103. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a5/

[1] J. F. Pommaret, Partial Differential Equations and Lie Pseudogroups, Gordon Breach, London, 1978 | MR | Zbl

[2] E. Cartan, Les Systèmes Différentialles Extériers et leurs Applications Géometriques, Hermann, Paris, 1945 | Zbl

[3] M. Kuranishi, “On E. Cartan's prolongation theorem of exterior differential systems”, Amer. J. Math., 79 (1957), 1–47 | DOI | MR | Zbl

[4] R. K. Rashevsky, Geometric theory of partial differential equations, OGIZ, Moscow–Leningrad, 1947 (in Russian) | MR

[5] J. F. Thomas, Differential Systems, AMS Publication, New York, 1937 ; Systems and Roots, The William Byrd Press, Richmond, Virginia, 1962 | Zbl

[6] S. P. Finikov, Cartan's method of exterior forms in differential geometry, OGIZ, Moscow–Leningrad, 1948 (in Russian) | MR | Zbl

[7] V. P. Gerdt, Yu. A. Blinkov, “Involutive Bases of Polynomial Ideals”, Mathematics and Computers in Simulation, 45 (1998), 519–542 ; ; 45, 1998 ; arxiv: math.AC/9912027arxiv: math.AC/9912029 | DOI | MR | DOI | MR | Zbl

[8] V. P. Gerdt, “Involutive Algorithms for Computing Gröbner Bases”, Computational Commutative and Non-Commutative Algebraic Geometry, NATO Science Series, IOS Press, 2005, 199–225 ; arxiv: math.AC/0501111 | MR | Zbl

[9] W. M. Seiler, A Combinatorial Approach to Involution and Delta-Regularity I: Involutive Bases in Polynomial Algebras of Solvable Type, Preprint, Universität Kassel, 2007 | MR

[10] C. Riquier, Les Systèmes d'Equations aux Dérivées Partielles, Gauthier-Villars, Paris, 1910

[11] M. Janet, Leçons sur les Systèmes d'Equations aux Dérivées Partielles, Cahiers Scientifiques, IV, Gauthier-Villars, Paris, 1929 | Zbl

[12] W. Plesken, “Counting solutions of polynomial systems via iterated filtrations”, Arch. Math., 92 (2009), 44–56 | DOI | MR | Zbl

[13] D. Wang, Elimination Methods, Springer, Wien, 2000 | MR

[14] V. P. Gerdt, “On Decomposition of Algebraic PDE Systems into Simple Subsystems”, Acta Appl. Math., 101 (2008), 39–51 | DOI | MR | Zbl

[15] E. Hubert, “Notes on Triangular Sets and Triangulation-Decomposition Algorithms I: Polynomial Systems”, Symbolic and Numerical Scientific Computation, LNCS, 2630, 2001, 1–39 | MR

[16] V. P. Gerdt, “Completion of Linear Differential Systems to Involution”, Computer Algebra in Scientific Computing, CASC' 99, Springer-Verlag, Berlin, 1999, 115–137 ; arxiv: math.AP/9909114 | MR | Zbl

[17] J. Hadamard, “Sur les problem̀es aux dériveés partielles et leur signification physique”, Princeton University Bulletin, 1902, 49–52