@article{ZNSL_2009_373_a13,
author = {R. Peretz},
title = {The 2-$d$ {Jacobian} conjecture, the $d$-inversion approximation and its natural boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {210--225},
year = {2009},
volume = {373},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a13/}
}
R. Peretz. The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 210-225. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a13/
[1] H. Bass, E. H. Connell, D. Wright, “The Jacobian conjecture: reduction of degree and formal expansion of the inverse”, Bull. Amer. Math. Soc., 7:2 (1982), 287–330 | DOI | MR | Zbl
[2] M. de Bondt, A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian Conjecture, Report No 0307, University of Nijmegen, June 2003 | MR
[3] M. de Bondt, A. van den Essen, “Nilpotent symmetric Jacobian matrices and the Jacobian conjecture. II”, J. Pure Appl. Algebra, 196 (2005), 135–148 | DOI | MR | Zbl
[4] P. L. Duren, Univalent Functions, Springer-Verlag, 1983 | MR | Zbl
[5] A. van den Essen, Polynomial Automorphisms and the Jacobian conjecture, Progress Math., 190, Birkhäuser Verlag, Boston–Basel–Berlin, 2000 | MR | Zbl
[6] Jean-Philippe Furter, “On the variety of automorphisms of the affine plane”, J. Algebra, 195 (1997), 604–623 | DOI | MR | Zbl
[7] S. Friedland, J. Milnor, “Dynamical properties of the plane polynomial automorphisms”, Ergodic Th. Dynam. Systems, 9 (1989), 67–99 | MR | Zbl
[8] H. Grauert, R. Remmert, Coherent Analytic Sheaves, Grundlehren der mathematischen Wissenschaften, 265, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984 | DOI | MR | Zbl
[9] H. W. E. Jung, “Über ganze birationale Transformationen der Ebene”, J. Reine Angew. Math., 184 (1942), 161–174 | DOI | MR | Zbl
[10] S. Kaliman, “Extensions of isomorphisms between affinealgebraic subvarieties of $k^n$ to automorphisms of $k^n$”, Proceedings of the AMS, 113:2 (1991), 325–334 | DOI | MR | Zbl
[11] T. Kambayashi, “Pro-affine algebras, ind-affine groups and the Jacobian problem”, J. Algebra, 185 (1996), 481–501 | DOI | MR | Zbl
[12] T. Kambayashi, “Some basic results on pro-affine algebras and ind-affine schemes”, Osaka J. Math., 40 (2003), 621–638 | MR | Zbl
[13] T. Kambayashi, “Inverse limits of polynomial rings”, Osaka J. Math., 41 (2004), 617–624 | MR | Zbl
[14] W. van der Kulk, “On polynomial rings in two variables”, Nieuw Arch. Wisk. (3), 1 (1953), 33–41 | MR | Zbl
[15] R. Peretz, “The Jacobian variety”, Acta Vietnamica (to appear)
[16] I. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, New York–Heidelberg–Berlin, 1974 | MR | Zbl
[17] I. R. Shafarevich, “On some infinite-dimensional groups”, Rend. Mat. Appl., 25 (1966), 208–212 | MR | Zbl
[18] I. R. Shafarevich, “On some infinite-dimensional groups. II”, Math. USSR Izv., 18 (1982), 185–194 | DOI | MR | Zbl