The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 210-225

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F\in\mathbb C[X,Y]^2$ be an étale mapping of degree $\operatorname{deg}F=d$. An Étale mapping $G\in\mathbb C[X,Y]^2$ is called a $d$-inverse approximation of $F$ if $\operatorname{deg}G\le d$ and $F\circ G=(X+A(X,Y),Y+B(X,Y))$ and $G\circ F=(X+C(X,Y),Y+D(X,Y))$ where the orders of the four polynomials $A,B,C$ and $D$ are greater that $d$. It is a well known result that every $\mathbb C^2$ automorphism $F$ of degree $d$ has a $d$-inverse approximation, namely $F^{-1}$. In this paper we prove that if $F$ is a counterexample of degree $d$ to the 2-dimensional Jacobian Conjecture, then $F$ has no $d$-inverse approximation. We also give few conclusions of this result. Bibl. – 18 titles.
@article{ZNSL_2009_373_a13,
     author = {R. Peretz},
     title = {The 2-$d$ {Jacobian} conjecture, the $d$-inversion approximation and its natural boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {210--225},
     publisher = {mathdoc},
     volume = {373},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a13/}
}
TY  - JOUR
AU  - R. Peretz
TI  - The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 210
EP  - 225
VL  - 373
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a13/
LA  - en
ID  - ZNSL_2009_373_a13
ER  - 
%0 Journal Article
%A R. Peretz
%T The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 210-225
%V 373
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a13/
%G en
%F ZNSL_2009_373_a13
R. Peretz. The 2-$d$ Jacobian conjecture, the $d$-inversion approximation and its natural boundary. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 210-225. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a13/