Correct and selfadjoint problems with cubic operators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 194-209

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present a simple method to prove correctness and selfadjointness of operators $B^3$ , corresponding to some boundary problems. We give also the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples Derive and Mathematica were used. Bibl. – 10 titles.
@article{ZNSL_2009_373_a12,
     author = {I. N. Parasidis and P. C. Tsekrekos and T. G. Lokkas},
     title = {Correct and selfadjoint problems with cubic operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--209},
     publisher = {mathdoc},
     volume = {373},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/}
}
TY  - JOUR
AU  - I. N. Parasidis
AU  - P. C. Tsekrekos
AU  - T. G. Lokkas
TI  - Correct and selfadjoint problems with cubic operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 194
EP  - 209
VL  - 373
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/
LA  - ru
ID  - ZNSL_2009_373_a12
ER  - 
%0 Journal Article
%A I. N. Parasidis
%A P. C. Tsekrekos
%A T. G. Lokkas
%T Correct and selfadjoint problems with cubic operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 194-209
%V 373
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/
%G ru
%F ZNSL_2009_373_a12
I. N. Parasidis; P. C. Tsekrekos; T. G. Lokkas. Correct and selfadjoint problems with cubic operators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 194-209. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/