Correct and selfadjoint problems with cubic operators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 194-209
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we present a simple method to prove correctness and selfadjointness of operators $B^3$ , corresponding to some boundary problems. We give also the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples Derive and Mathematica were used. Bibl. – 10 titles.
@article{ZNSL_2009_373_a12,
author = {I. N. Parasidis and P. C. Tsekrekos and T. G. Lokkas},
title = {Correct and selfadjoint problems with cubic operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {194--209},
publisher = {mathdoc},
volume = {373},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/}
}
TY - JOUR AU - I. N. Parasidis AU - P. C. Tsekrekos AU - T. G. Lokkas TI - Correct and selfadjoint problems with cubic operators JO - Zapiski Nauchnykh Seminarov POMI PY - 2009 SP - 194 EP - 209 VL - 373 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/ LA - ru ID - ZNSL_2009_373_a12 ER -
I. N. Parasidis; P. C. Tsekrekos; T. G. Lokkas. Correct and selfadjoint problems with cubic operators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 194-209. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/