Correct and selfadjoint problems with cubic operators
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 194-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we present a simple method to prove correctness and selfadjointness of operators $B^3$ , corresponding to some boundary problems. We give also the unique solutions for these problems. The algorithm is easy to implement via computer algebra systems. In our examples Derive and Mathematica were used. Bibl. – 10 titles.
@article{ZNSL_2009_373_a12,
     author = {I. N. Parasidis and P. C. Tsekrekos and T. G. Lokkas},
     title = {Correct and selfadjoint problems with cubic operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {194--209},
     year = {2009},
     volume = {373},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/}
}
TY  - JOUR
AU  - I. N. Parasidis
AU  - P. C. Tsekrekos
AU  - T. G. Lokkas
TI  - Correct and selfadjoint problems with cubic operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 194
EP  - 209
VL  - 373
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/
LA  - ru
ID  - ZNSL_2009_373_a12
ER  - 
%0 Journal Article
%A I. N. Parasidis
%A P. C. Tsekrekos
%A T. G. Lokkas
%T Correct and selfadjoint problems with cubic operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 194-209
%V 373
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/
%G ru
%F ZNSL_2009_373_a12
I. N. Parasidis; P. C. Tsekrekos; T. G. Lokkas. Correct and selfadjoint problems with cubic operators. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVII, Tome 373 (2009), pp. 194-209. http://geodesic.mathdoc.fr/item/ZNSL_2009_373_a12/

[1] V. I. Gorbachuk, M. L. Gorbachuk, Boundary Value Problems for Operator Differential equations, Kluwer, Dordrecht, 1991 | MR | Zbl

[2] E. A. Coddington, “Self-adjoint subspace extensions of nondensely defined symmetric operators”, Adv. Math., 14 (1974), 309–332 | DOI | MR | Zbl

[3] M. I. Vishik, “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsyalnykh uravnenii”, Trudy Moskovskogo Mat. obschestva, 1, 1952, 187–246 | Zbl

[4] M. G. Krein, “Teoriya samosopryazhennykh rasshirenii poluogranichennykh operatorov i ee prilozheniya”, Mat. sbornik, 20(62):3 (1947), 431–495 | MR | Zbl

[5] A. A. Dezin, “Nestandartnye zadachi”, Matem. zametki, 41:3 (1987), 356–364 | MR | Zbl

[6] B. K. Kokebaev, M. Otelbaev, A. N. Shynybekov, “K teorii suzheniya i rasshireniya operatorov”, DAN SSSR, 271:6 (1983), 1307–1310 | MR | Zbl

[7] A. N. Kochubei, “Rasshireniya polozhitelno-opredelennykh simmetricheskikh operatorov”, DAN USSR. Ser. A, 1979, no. 3, 168–171 | MR

[8] R. O. Oinarov, I. N. Parasidi, “Korrektno razreshimye rasshireniya operatorov s konechnymi defektami v banakhovom prostranstve”, Izv. AN Kaz.SSR, ser. fiz.-mat., 1988, no. 5, 42–46 | MR

[9] A. N. Shynybekov, O korrektnykh suzheniyakh i rasshireniyakh nekotorykh differentsialnykh operatorov, Avtoreferat diss. k.f.-m.n., Alma-Ata, 1983

[10] I. N. Parasidis, P. C. Tsekrekos, “Correct selfadjoint and positive extensions of nondensely defined symmetric operators”, Abstract and Applied Analysis (Hindawi Publishing Corporation), 7 (2005), 767–790 | DOI