@article{ZNSL_2009_370_a3,
author = {A. Kiselev and F. Nazarov},
title = {A variation on a~theme of {Caffarelli} and {Vasseur}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {58--72},
year = {2009},
volume = {370},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a3/}
}
A. Kiselev; F. Nazarov. A variation on a theme of Caffarelli and Vasseur. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 40, Tome 370 (2009), pp. 58-72. http://geodesic.mathdoc.fr/item/ZNSL_2009_370_a3/
[1] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, arXiv: math/0608447 | MR
[2] P. Constantin, J. Wu, Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation, arXiv: math/0701592 | MR
[3] A. Cordoba, D. Cordoba, “A maximum principle applied to quasi-geostrophic equations”, Commun. Math. Phys., 249 (2004), 511–528 | DOI | MR | Zbl
[4] H. Dong, Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global well-posedness, arXiv: math/0701826 | MR
[5] A. Kiselev, F. Nazarov, A. Volberg, “Global well-posedness for the critical $2D$ dissipative quasi-geostrophic equation”, Inv. Math., 167 (2007), 445–453 | DOI | MR | Zbl
[6] E. Stein, Harmonic Analysis, Princeton University Press, 1993 | MR | Zbl