Homoclinic processes and invariant measures for hyperbolic toral automorphisms
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 122-129 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For every hyperbolic toral automorphism $T$, the present author has defined in one of his previous papers some unbounded $T$-invariant second order difference operators related to the so-called homoclinic group of $T$. These operators were considered in the space $L_2$ with respect to the Haar measure. It is shown in the present paper that such operators give rise to transition semigroups in the space of continuous functions on the torus and generate dynamically invariant Markov processes. This leads almost immediately to a family of invariant measures for the automorphism $T$. After a short discussion, some open questions about properties of these measures and related topics are posed. Bibl. – 9 titles.
@article{ZNSL_2009_368_a8,
     author = {M. I. Gordin},
     title = {Homoclinic processes and invariant measures for hyperbolic toral automorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--129},
     year = {2009},
     volume = {368},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a8/}
}
TY  - JOUR
AU  - M. I. Gordin
TI  - Homoclinic processes and invariant measures for hyperbolic toral automorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 122
EP  - 129
VL  - 368
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a8/
LA  - ru
ID  - ZNSL_2009_368_a8
ER  - 
%0 Journal Article
%A M. I. Gordin
%T Homoclinic processes and invariant measures for hyperbolic toral automorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 122-129
%V 368
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a8/
%G ru
%F ZNSL_2009_368_a8
M. I. Gordin. Homoclinic processes and invariant measures for hyperbolic toral automorphisms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 122-129. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a8/

[1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math., 470, Springer-Verlag, Berlin, 1975 | MR | Zbl

[2] A. M. Vershik, “Sverkhgrubost giperbolicheskikh avtomorfizmov i unitarnye dilatatsii markovskikh operatorov”, Vestnik LGU. Ser. 1 matem., mekh., astron., 1987, no. 3, 28–33, 127 | MR | Zbl

[3] R. J. Glauber, “Time-dependent statistics of the Ising model”, J. Math. Phys., 4 (1963), 294–307 | DOI | MR | Zbl

[4] M. Gordin, “Homoclinic approach to the central limit theorem for dynamical systems”, Doeblin and Modern Probability (Blaubeuren, 1991), Contemp. Math., 149, Amer. Math. Soc., Providence, 1993, 149–162 | DOI | MR | Zbl

[5] T. M. Liggett, Interacting particle systems, Springer-Verlag, New York, 1985 | MR | Zbl

[6] P. Erdős, “On a family of symmetric Bernoulli convolutions”, Amer. J. Math., 61 (1939), 974–976 | DOI | MR | Zbl

[7] E. Olivier, N. Sidorov, A. Thomas, “On the Gibbs properties of Bernoulli convolutions related to $\beta$-numeration in multinacci bases”, Monatsh. Math., 145:2 (2005), 145–174 | DOI | MR | Zbl

[8] D. Ruelle, “Thermodynamic formalism. The mathematical structures of classical equilibriun statistical mechanics”, Encyclop. of Mathem. and Its Applic., 5, Addison-Wesley, Reading, Massachusetts, 1978 | MR | Zbl

[9] N. Sidorov, A. Vershik, “Ergodic properties of the Erdős measure, the entropy of the golden shift, and related problems”, Monatsh. Math., 126:3 (1998), 215–261 | DOI | MR | Zbl