@article{ZNSL_2009_368_a8,
author = {M. I. Gordin},
title = {Homoclinic processes and invariant measures for hyperbolic toral automorphisms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--129},
year = {2009},
volume = {368},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a8/}
}
M. I. Gordin. Homoclinic processes and invariant measures for hyperbolic toral automorphisms. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 15, Tome 368 (2009), pp. 122-129. http://geodesic.mathdoc.fr/item/ZNSL_2009_368_a8/
[1] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes Math., 470, Springer-Verlag, Berlin, 1975 | MR | Zbl
[2] A. M. Vershik, “Sverkhgrubost giperbolicheskikh avtomorfizmov i unitarnye dilatatsii markovskikh operatorov”, Vestnik LGU. Ser. 1 matem., mekh., astron., 1987, no. 3, 28–33, 127 | MR | Zbl
[3] R. J. Glauber, “Time-dependent statistics of the Ising model”, J. Math. Phys., 4 (1963), 294–307 | DOI | MR | Zbl
[4] M. Gordin, “Homoclinic approach to the central limit theorem for dynamical systems”, Doeblin and Modern Probability (Blaubeuren, 1991), Contemp. Math., 149, Amer. Math. Soc., Providence, 1993, 149–162 | DOI | MR | Zbl
[5] T. M. Liggett, Interacting particle systems, Springer-Verlag, New York, 1985 | MR | Zbl
[6] P. Erdős, “On a family of symmetric Bernoulli convolutions”, Amer. J. Math., 61 (1939), 974–976 | DOI | MR | Zbl
[7] E. Olivier, N. Sidorov, A. Thomas, “On the Gibbs properties of Bernoulli convolutions related to $\beta$-numeration in multinacci bases”, Monatsh. Math., 145:2 (2005), 145–174 | DOI | MR | Zbl
[8] D. Ruelle, “Thermodynamic formalism. The mathematical structures of classical equilibriun statistical mechanics”, Encyclop. of Mathem. and Its Applic., 5, Addison-Wesley, Reading, Massachusetts, 1978 | MR | Zbl
[9] N. Sidorov, A. Vershik, “Ergodic properties of the Erdős measure, the entropy of the golden shift, and related problems”, Monatsh. Math., 126:3 (1998), 215–261 | DOI | MR | Zbl