@article{ZNSL_2009_367_a4,
author = {Kh. D. Ikramov and H. Fassbender},
title = {Quadratically normal and congruence-normal matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--66},
year = {2009},
volume = {367},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/}
}
Kh. D. Ikramov; H. Fassbender. Quadratically normal and congruence-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/
[1] R. Grone, C. R. Johnson, E. M. Sa, H. Wolkowicz, “Normal matrices”, Linear Algebra Appl., 87 (1987), 213–225 | DOI | MR | Zbl
[2] L. Elsner, Kh. D. Ikramov, “Normal matrices: an update”, Linear Algebra Appl., 285 (1998), 291–303 | DOI | MR | Zbl
[3] H. Faßbender, Kh. D. Ikramov, “Conjugate-normal matrices: a survey”, Linear Algebra Appl., 429 (2008), 1425–1441 | DOI | MR
[4] M. Vujičić, F. Herbut, G. Vujičić, “Canonical form for matrices under unitary congruence transformations. I. Conjugate-normal matrices”, SIAM J. Appl. Math., 23 (1972), 225–238 | DOI | MR | Zbl
[5] H. Faßbender, Kh. D. Ikramov, “Some observations on the Youla form and conjugate-normal matrices”, Linear Algebra Appl., 422 (2007), 29–38 | DOI | MR
[6] F. Herbut, P. Loncke, M. Vujičić, “Canonical form for matrices under unitary congruence transformations. II. Congruence-normal matrices”, SIAM J. Appl. Math., 26 (1974), 794–805 | DOI | MR
[7] F. Kittaneh, “On the structure of polynomially normal operators”, Bull. Austral. Math. Soc., 30 (1984), 11–18 | DOI | MR | Zbl
[8] H. Radjavi, P. Rosenthal, “On roots of normal operators”, J. Math. Anal. Appl., 34 (1971), 653–664 | DOI | MR | Zbl
[9] T. J. Laffey, “A normality criterion for an algebra of matrices”, Linear Algebra Appl., 25 (1979), 169–174 | DOI | MR | Zbl
[10] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR
[11] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991 | MR | Zbl
[12] R. A. Horn, D. I. Merino, “A real-coninvolutory analog of the polar decomposition”, Linear Algebra Appl., 190 (1993), 209–227 | DOI | MR | Zbl
[13] M. N. M. Abara, D. I. Merino, A. T. Paras, “Skew-coninvolutory matrices”, Linear Algebra Appl., 426 (2007), 540–557 | DOI | MR | Zbl