Quadratically normal and congruence-normal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66

Voir la notice de l'article provenant de la source Math-Net.Ru

A matrix $A\in\mathbf C^{n\times n}$ is unitarily quasi-diagonalizable if $A$ can be brought by a unitary similarity transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. In particular, the square roots of normal matrices, the so-called quadratically normal matrices, are unitarily quasi-diagonalizable. A matrix $A\in\mathbf C^{n\times n}$ is congruence-normal if $B=A\overline A$ is a conventional normal matrix. We show that every congruence-normal matrix $A$ can be brought by a unitary congruence transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. Our proof emphasizes and exploits the likeliness between the equations $X^2=B$ and $X\overline X=B$ for a normal matrix $B$. Bibl. – 13 titles.
@article{ZNSL_2009_367_a4,
     author = {Kh. D. Ikramov and H. Fassbender},
     title = {Quadratically normal and congruence-normal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--66},
     publisher = {mathdoc},
     volume = {367},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - H. Fassbender
TI  - Quadratically normal and congruence-normal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 45
EP  - 66
VL  - 367
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/
LA  - ru
ID  - ZNSL_2009_367_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A H. Fassbender
%T Quadratically normal and congruence-normal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 45-66
%V 367
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/
%G ru
%F ZNSL_2009_367_a4
Kh. D. Ikramov; H. Fassbender. Quadratically normal and congruence-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/