Quadratically normal and congruence-normal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66
Voir la notice de l'article provenant de la source Math-Net.Ru
A matrix $A\in\mathbf C^{n\times n}$ is unitarily quasi-diagonalizable if $A$ can be brought by a unitary similarity transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. In particular, the square roots of normal matrices, the so-called quadratically normal matrices, are unitarily quasi-diagonalizable.
A matrix $A\in\mathbf C^{n\times n}$ is congruence-normal if $B=A\overline A$ is a conventional normal matrix. We show that every congruence-normal matrix $A$ can be brought by a unitary congruence transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. Our proof emphasizes and exploits the likeliness between the equations $X^2=B$ and $X\overline X=B$ for a normal matrix $B$. Bibl. – 13 titles.
@article{ZNSL_2009_367_a4,
author = {Kh. D. Ikramov and H. Fassbender},
title = {Quadratically normal and congruence-normal matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--66},
publisher = {mathdoc},
volume = {367},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/}
}
Kh. D. Ikramov; H. Fassbender. Quadratically normal and congruence-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/