Quadratically normal and congruence-normal matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A matrix $A\in\mathbf C^{n\times n}$ is unitarily quasi-diagonalizable if $A$ can be brought by a unitary similarity transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. In particular, the square roots of normal matrices, the so-called quadratically normal matrices, are unitarily quasi-diagonalizable. A matrix $A\in\mathbf C^{n\times n}$ is congruence-normal if $B=A\overline A$ is a conventional normal matrix. We show that every congruence-normal matrix $A$ can be brought by a unitary congruence transformation to a block diagonal form with $1\times1$ and $2\times2$ diagonal blocks. Our proof emphasizes and exploits the likeliness between the equations $X^2=B$ and $X\overline X=B$ for a normal matrix $B$. Bibl. – 13 titles.
@article{ZNSL_2009_367_a4,
     author = {Kh. D. Ikramov and H. Fassbender},
     title = {Quadratically normal and congruence-normal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--66},
     year = {2009},
     volume = {367},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - H. Fassbender
TI  - Quadratically normal and congruence-normal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 45
EP  - 66
VL  - 367
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/
LA  - ru
ID  - ZNSL_2009_367_a4
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A H. Fassbender
%T Quadratically normal and congruence-normal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 45-66
%V 367
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/
%G ru
%F ZNSL_2009_367_a4
Kh. D. Ikramov; H. Fassbender. Quadratically normal and congruence-normal matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXII, Tome 367 (2009), pp. 45-66. http://geodesic.mathdoc.fr/item/ZNSL_2009_367_a4/

[1] R. Grone, C. R. Johnson, E. M. Sa, H. Wolkowicz, “Normal matrices”, Linear Algebra Appl., 87 (1987), 213–225 | DOI | MR | Zbl

[2] L. Elsner, Kh. D. Ikramov, “Normal matrices: an update”, Linear Algebra Appl., 285 (1998), 291–303 | DOI | MR | Zbl

[3] H. Faßbender, Kh. D. Ikramov, “Conjugate-normal matrices: a survey”, Linear Algebra Appl., 429 (2008), 1425–1441 | DOI | MR

[4] M. Vujičić, F. Herbut, G. Vujičić, “Canonical form for matrices under unitary congruence transformations. I. Conjugate-normal matrices”, SIAM J. Appl. Math., 23 (1972), 225–238 | DOI | MR | Zbl

[5] H. Faßbender, Kh. D. Ikramov, “Some observations on the Youla form and conjugate-normal matrices”, Linear Algebra Appl., 422 (2007), 29–38 | DOI | MR

[6] F. Herbut, P. Loncke, M. Vujičić, “Canonical form for matrices under unitary congruence transformations. II. Congruence-normal matrices”, SIAM J. Appl. Math., 26 (1974), 794–805 | DOI | MR

[7] F. Kittaneh, “On the structure of polynomially normal operators”, Bull. Austral. Math. Soc., 30 (1984), 11–18 | DOI | MR | Zbl

[8] H. Radjavi, P. Rosenthal, “On roots of normal operators”, J. Math. Anal. Appl., 34 (1971), 653–664 | DOI | MR | Zbl

[9] T. J. Laffey, “A normality criterion for an algebra of matrices”, Linear Algebra Appl., 25 (1979), 169–174 | DOI | MR | Zbl

[10] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[11] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[12] R. A. Horn, D. I. Merino, “A real-coninvolutory analog of the polar decomposition”, Linear Algebra Appl., 190 (1993), 209–227 | DOI | MR | Zbl

[13] M. N. M. Abara, D. I. Merino, A. T. Paras, “Skew-coninvolutory matrices”, Linear Algebra Appl., 426 (2007), 540–557 | DOI | MR | Zbl