Weizsäcker phenomenon and Gaussian Lebesgue–Rokhlin space
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 200-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The notion of “Gaussian Lebesgue–Rokhlin space” is introduced. The definition is canonical, i.e., is given without use of topological and others irrelevant mathematical structures. The object under discussion completes the cathegoty of finite-dimensional Gaussian vector spaces. Some non-trivial examples are considered and historical comments are given. Bibl. – 30 titles.
@article{ZNSL_2009_364_a8,
     author = {V. N. Sudakov},
     title = {Weizs\"acker phenomenon and {Gaussian} {Lebesgue{\textendash}Rokhlin} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--234},
     year = {2009},
     volume = {364},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a8/}
}
TY  - JOUR
AU  - V. N. Sudakov
TI  - Weizsäcker phenomenon and Gaussian Lebesgue–Rokhlin space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2009
SP  - 200
EP  - 234
VL  - 364
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a8/
LA  - ru
ID  - ZNSL_2009_364_a8
ER  - 
%0 Journal Article
%A V. N. Sudakov
%T Weizsäcker phenomenon and Gaussian Lebesgue–Rokhlin space
%J Zapiski Nauchnykh Seminarov POMI
%D 2009
%P 200-234
%V 364
%U http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a8/
%G ru
%F ZNSL_2009_364_a8
V. N. Sudakov. Weizsäcker phenomenon and Gaussian Lebesgue–Rokhlin space. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 14–2, Tome 364 (2009), pp. 200-234. http://geodesic.mathdoc.fr/item/ZNSL_2009_364_a8/

[1] V. N. Sudakov, “Geometricheskie problemy teorii beskonechnomernykh veroyatnostnykh raspredelenii”, Trudy MIAN, 141, 1976, 3–191 | MR | Zbl

[2] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sb., 25(67):1 (1949), 107–150 | MR | Zbl

[3] V. A. Rokhlin, Izbrannye raboty, MTsNMO, VKM, NMU, 1999, 1–196 | MR

[4] N. Martin, Dzh. Inglend, Matematicheskaya teoriya entropii, Mir, M., 1988 | MR | Zbl

[5] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[6] V. I. Bogachëv, Osnovy teorii mery, T. 2, R C, Moskva–Izhevsk, 2003

[7] N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1,2,3 et 4: Inegalites de convexite, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d'une mesure, Espaces $L_p$, Deuxième édition revue et augmentee. Actualités Scientifiques et Industrielles, 1175, Hermann, Paris, 1965, 283 pp. | MR

[8] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, 2-e izd., Nauka, M., 1974 | MR | Zbl

[9] V. Sudakov, “Gaussian Measures. A Brief Survey”, Rendiconti dell'Istituto di matematica dell'Universita di Trieste, vol. XXVI, 1994, Supplemento, Edizioni LINT Trieste, 1994, 289–325 | MR

[10] V. N. Sudakov, “Gaussovskie sluchainye protsessy i mery telesnykh uglov v gilbertovom prostranstve”, DAN SSSR, 197:1 (1971), 43–45 | MR | Zbl

[11] V. I. Bogachëv, Gaussovskie mery, Nauka, Fizmatgiz, M., 1997 | MR | Zbl

[12] M. Talagrand, “Mesures Gaussiennes sur un espace localement convexe”, Z. Warscheinlichkeitstheorie und verw. Geb. B, 64 (1983), 181–209 | DOI | MR | Zbl

[13] P. R. Halmos, J. v. Neumann, “Operator measures in classical mechanics. II”, Ann. Math., 33 (1932), 582 | MR

[14] W. Amrosse, P. R. Halmos, S. Kakutani, “The decompositions of measures. II”, Duke Math. J., 9 (1942), 29–32 | MR

[15] P. R. Halmos, “On a theorem of Dieudonne”, Proc. Nat. Acad. Sci. USA, 35, no. 1, 1949, 38–42 | DOI | MR | Zbl

[16] M. A. Lifshits, Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995 | Zbl

[17] A. I. Kostrikin, Yu. I. Manin, Lineinaya algebra i geometriya, Nauka, M., 1986 | MR

[18] V. N. Sudakov, B. S. Tsirelson, “Ekstremalnye svoistva poluprostranstv dlya sfericheski invariantnykh mer”, Zap. nauchn. semin. LOMI, 41, 1974, 14–24 | MR | Zbl

[19] B. Cirel'son, I. Ibragimov, V. Sudakov, “Norms of Gaussian sample functions”, Proc. of the third Japan–USSR Symp. on Probability Theory, Lect. Notes Math., 550, Springer-Verlag, 1976, 20–41 | DOI | MR

[20] T. Byczkowsu, “RKHS for Gaussian Measures on Metric Vector Spaces”, Bull. of the Polish Academy of Sciences, Mathematics, 35:1–2 (1987), 93–104 | MR

[21] B. S. Tsirelson, “Estestvennaya modifikatsiya sluchainogo protsessa i eë prilozheniya”, Zap. nauchn. semin. LOMI, 55, 1978, 35–63

[22] V. N. Sudakov, “Zamechaniya o modifikatsiyakh sluchainykh protsessov”, Zap. nauchn. semin. POMI, 194, 1992, 150–169 | MR | Zbl | Zbl

[23] V. G. Vinokurov, B. A. Rubinshtein, A. L. Fëdorov, Prostranstvo Lebega i ego izmerimye razbieniya, TashGU, Tashkent, 1985

[24] I. A. Ibragimov, Yu. A. Rozanov, Gaussovskie sluchainye protsessy, Nauka, M., 1970 | MR

[25] V. I. Bogachëv, Osnovy teorii mery, T. 1, R C, Moskva–Izhevsk, 2003

[26] Zh. Nevë, Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | MR | Zbl

[27] J. Neveu, Processus aléatoires Gaussiens, Université de Montréal, 1971, 228 pp. | MR

[28] X.-C. Go, Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979

[29] X. Fernique, Regularite des traéctoires des fonctuons aléatoires Gaussiennes, Ecole dété de probabilityés, Lect. Notes Math., 480, Springer-Verlag, 1975 | DOI | MR

[30] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer-Verlag, 1991 | MR | Zbl