Two-phase Stefan problem with vanishing specific heat
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 337-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove the unique solvability of the two-phase Stefan problem with a small parameter $\varepsilon\in[0;\varepsilon_0]$ at the time derivative in the heat equations. The solution is obtained on a certain time interval $[0;t_0]$ independent of $\varepsilon$. We compare the solution of the Stefan problem with the solution to the Hele–Shaw problem corresponding to the case $\varepsilon=0$. We do not assume that the solutions of both problems coincide at the initial moment of time. Bibl. – 18 titles.
@article{ZNSL_2008_362_a12,
     author = {E. V. Frolova},
     title = {Two-phase {Stefan} problem with vanishing specific heat},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {337--363},
     year = {2008},
     volume = {362},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a12/}
}
TY  - JOUR
AU  - E. V. Frolova
TI  - Two-phase Stefan problem with vanishing specific heat
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 337
EP  - 363
VL  - 362
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a12/
LA  - en
ID  - ZNSL_2008_362_a12
ER  - 
%0 Journal Article
%A E. V. Frolova
%T Two-phase Stefan problem with vanishing specific heat
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 337-363
%V 362
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a12/
%G en
%F ZNSL_2008_362_a12
E. V. Frolova. Two-phase Stefan problem with vanishing specific heat. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 337-363. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a12/

[1] Fahuai Yi, “Asymptotic behaviour of the solutions of the supercooled Stefan problem”, Proceedings of the Royal Society of Edinburgh A, 127 (1997), 181–190 | MR | Zbl

[2] V. A. Solonnikov, E. V. Frolova, “Justification of the quasistationary approximation for the Stefan problem”, Zap. Nauchn. Semin. POMI, 348, 2007, 209–253 | MR

[3] V. A. Solonnikov, “On the justification of the quasi-stationary approximation in the problem of motion of a viscous capillary drop”, Interfaces Free Boundaries, 1 (1999), 125–173 | DOI | MR | Zbl

[4] A. M. Meirmanov, The Stefan problem, Nauka, Novosibirsk, 1986 | MR

[5] E. V. Radkevich, A. S. Melikulov, Free boundary problems, FAN, Tashkent, 1988 | MR | Zbl

[6] G. I. Bizhanova, V. A. Solonnikov, “Free boundary problems for second order parabolic equations”, Algebra i Analiz, 12:6 (2000), 98–139 | MR

[7] G. I. Bizhanova, “Solution in a weighted Hölder function space of multidimensional two-phase Stefan and Florin problems for second order parabolic equations in a bounded domain”, Algebra i Analiz, 7:2 (1995), 46–76 | MR | Zbl

[8] Fahuai Yi, “Classical solutions of quasi-stationary Stefan problem”, Chin. Ann. Math., 17:2 (1996), 175–186 | MR | Zbl

[9] J. Escher, G. Simonet, “Classical solutions of multidimantional Hele–Shaw model”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl

[10] E. V. Frolova, “Quasistationary approximation for the Stefan problem”, Probl. Mat. Anal., 31 (2005), 167–178 | MR

[11] V. S. Belonosov, T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations, NGU, Novosibirsk, 1975 | MR

[12] E. I. Hanzawa, “Classical solutions of the Stefan problem”, Tohoku Math. J., 33 (1981), 297–335 | DOI | MR | Zbl

[13] G. I. Bizhanova, “Solution of an initial-boundary value problem with time derivative in the conjugation condition for a second order parabolic equation in a weighted Hölder function space”, Algebra i Analiz, 6:1 (1994), 64–94 | MR | Zbl

[14] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Lect. Notes Math. Springer, 1812, Springer, Berlin, 2003, 123–175 | MR | Zbl

[15] B. V. Bazaliy, “The Stefan problem”, Dokl. Akad. Nauk USSR Ser. A, 1986, no. 11, 3–7 | MR

[16] B. V. Bazaliy, S. P. Degtyarev, “On the classical solvability of a multidimensional Stefan problem with convective movement of a viscous incompressible fluid”, Mat. Sb., 132(174):1 (1987), 3–19 | MR | Zbl

[17] E. V. Radkevich, “On solvability of general nonstationary problems with a free boundary”, Some applications of Functional Analysis to the Problems of Mathematical Physics, Akad. Nauk SSSR, Novosibirsk, 1986, 85–111 | MR

[18] V. A. Solonnikov, E. V. Frolova, “Weighted estimates of a solution to the linear problem connected with the one-phase Stefan problem in the case where the specific heat tends to zero”, Zap. Nauchn. Semin. POMI, 336, 2006, 239–263 | MR | Zbl