@article{ZNSL_2008_362_a12,
author = {E. V. Frolova},
title = {Two-phase {Stefan} problem with vanishing specific heat},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {337--363},
year = {2008},
volume = {362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a12/}
}
E. V. Frolova. Two-phase Stefan problem with vanishing specific heat. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 39, Tome 362 (2008), pp. 337-363. http://geodesic.mathdoc.fr/item/ZNSL_2008_362_a12/
[1] Fahuai Yi, “Asymptotic behaviour of the solutions of the supercooled Stefan problem”, Proceedings of the Royal Society of Edinburgh A, 127 (1997), 181–190 | MR | Zbl
[2] V. A. Solonnikov, E. V. Frolova, “Justification of the quasistationary approximation for the Stefan problem”, Zap. Nauchn. Semin. POMI, 348, 2007, 209–253 | MR
[3] V. A. Solonnikov, “On the justification of the quasi-stationary approximation in the problem of motion of a viscous capillary drop”, Interfaces Free Boundaries, 1 (1999), 125–173 | DOI | MR | Zbl
[4] A. M. Meirmanov, The Stefan problem, Nauka, Novosibirsk, 1986 | MR
[5] E. V. Radkevich, A. S. Melikulov, Free boundary problems, FAN, Tashkent, 1988 | MR | Zbl
[6] G. I. Bizhanova, V. A. Solonnikov, “Free boundary problems for second order parabolic equations”, Algebra i Analiz, 12:6 (2000), 98–139 | MR
[7] G. I. Bizhanova, “Solution in a weighted Hölder function space of multidimensional two-phase Stefan and Florin problems for second order parabolic equations in a bounded domain”, Algebra i Analiz, 7:2 (1995), 46–76 | MR | Zbl
[8] Fahuai Yi, “Classical solutions of quasi-stationary Stefan problem”, Chin. Ann. Math., 17:2 (1996), 175–186 | MR | Zbl
[9] J. Escher, G. Simonet, “Classical solutions of multidimantional Hele–Shaw model”, SIAM J. Math. Anal., 28:5 (1997), 1028–1047 | DOI | MR | Zbl
[10] E. V. Frolova, “Quasistationary approximation for the Stefan problem”, Probl. Mat. Anal., 31 (2005), 167–178 | MR
[11] V. S. Belonosov, T. I. Zelenyak, Nonlocal Problems in the Theory of Quasilinear Parabolic Equations, NGU, Novosibirsk, 1975 | MR
[12] E. I. Hanzawa, “Classical solutions of the Stefan problem”, Tohoku Math. J., 33 (1981), 297–335 | DOI | MR | Zbl
[13] G. I. Bizhanova, “Solution of an initial-boundary value problem with time derivative in the conjugation condition for a second order parabolic equation in a weighted Hölder function space”, Algebra i Analiz, 6:1 (1994), 64–94 | MR | Zbl
[14] V. A. Solonnikov, “Lectures on evolution free boundary problems: classical solutions”, Lect. Notes Math. Springer, 1812, Springer, Berlin, 2003, 123–175 | MR | Zbl
[15] B. V. Bazaliy, “The Stefan problem”, Dokl. Akad. Nauk USSR Ser. A, 1986, no. 11, 3–7 | MR
[16] B. V. Bazaliy, S. P. Degtyarev, “On the classical solvability of a multidimensional Stefan problem with convective movement of a viscous incompressible fluid”, Mat. Sb., 132(174):1 (1987), 3–19 | MR | Zbl
[17] E. V. Radkevich, “On solvability of general nonstationary problems with a free boundary”, Some applications of Functional Analysis to the Problems of Mathematical Physics, Akad. Nauk SSSR, Novosibirsk, 1986, 85–111 | MR
[18] V. A. Solonnikov, E. V. Frolova, “Weighted estimates of a solution to the linear problem connected with the one-phase Stefan problem in the case where the specific heat tends to zero”, Zap. Nauchn. Semin. POMI, 336, 2006, 239–263 | MR | Zbl