Gaussian elimination and the ranks of the components in the Cartesian decomposition of a matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 31-35
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A=B+iC$, where $B=B^*$, $C=C^*$, be the Cartesian decomposition of an $n\times n$ matrix $A$, and let the component $B$ (or $C$) have rank $r. It is shown that for a nonsingular $A$, the inverse $A^{-1}$ has an analogous property. This implies that all the (correctly defined) Schur complements in $A$ have Cartesian decompositions with component $B$ (or $C$) of rank $\le r$. The active submatrix at each step of the Gaussian elimination applied to $A$ is the Schur complement of the appropriate leading principal submatrix. Bibl. – 2 titles.
@article{ZNSL_2008_359_a2,
author = {Kh. D. Ikramov},
title = {Gaussian elimination and the ranks of the components in the {Cartesian} decomposition of a~matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {31--35},
year = {2008},
volume = {359},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a2/}
}
Kh. D. Ikramov. Gaussian elimination and the ranks of the components in the Cartesian decomposition of a matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 31-35. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a2/