Gaussian elimination and the ranks of the components in the Cartesian decomposition of a~matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 31-35

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A=B+iC$, where $B=B^*$, $C=C^*$, be the Cartesian decomposition of an $n\times n$ matrix $A$, and let the component $B$ (or $C$) have rank $r$. It is shown that for a nonsingular $A$, the inverse $A^{-1}$ has an analogous property. This implies that all the (correctly defined) Schur complements in $A$ have Cartesian decompositions with component $B$ (or $C$) of rank $\le r$. The active submatrix at each step of the Gaussian elimination applied to $A$ is the Schur complement of the appropriate leading principal submatrix. Bibl. – 2 titles.
@article{ZNSL_2008_359_a2,
     author = {Kh. D. Ikramov},
     title = {Gaussian elimination and the ranks of the components in the {Cartesian} decomposition of a~matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--35},
     publisher = {mathdoc},
     volume = {359},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Gaussian elimination and the ranks of the components in the Cartesian decomposition of a~matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 31
EP  - 35
VL  - 359
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a2/
LA  - ru
ID  - ZNSL_2008_359_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Gaussian elimination and the ranks of the components in the Cartesian decomposition of a~matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 31-35
%V 359
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a2/
%G ru
%F ZNSL_2008_359_a2
Kh. D. Ikramov. Gaussian elimination and the ranks of the components in the Cartesian decomposition of a~matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXI, Tome 359 (2008), pp. 31-35. http://geodesic.mathdoc.fr/item/ZNSL_2008_359_a2/