@article{ZNSL_2008_353_a5,
author = {M. Yu. Zvagel'skii},
title = {An elementary proof of {Tverberg's} theorem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {54--61},
year = {2008},
volume = {353},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/}
}
M. Yu. Zvagel'skii. An elementary proof of Tverberg's theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/
[1] H. Tverberg, “A generalization of Radon's theorem”, J. Lond. Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl
[2] J. Radon, “Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten”, Math. Ann., 83 (1921), 113–115 | DOI | MR | Zbl
[3] I. Bárány, “A generalization of Carathéodory's theorem”, Disc. Math., 40 (1982), 141–152 | DOI | MR | Zbl
[4] I. Bárány, S. B. Shlosman, A. Szűcs, “On a topological generalization of a theorem of Tverberg”, J. Lond. Math. Soc., 23 (1981), 158–164 | DOI | MR | Zbl
[5] M. de Longueville, The topological Tverberg theorem for prime powers, Seminar notes, Techn. Univ. Berlin, 1998
[6] K. S. Sarkaria, “Tverberg's theorem via number fields”, Israel J. Math., 79 (1992), 317–320 | DOI | MR | Zbl
[7] K. S. Sarkaria, “Tverberg partitions and Borsuk–Ulam theorems”, Pacific J. Math., 196 (2000), 231–241 | DOI | MR | Zbl
[8] S. A. Bogatyi, “Tsvetnaya teorema Tverberg”, Vestn. Mosk. univ., Ser. 1, Matem. Mekh., 1999, no. 3, 14–19 | MR | Zbl
[9] A. Yu. Volovikov, “K topologicheskomu obobscheniyu teoremy Tverberg”, Mat. zametki, 59 (1996), 454–456 | MR | Zbl