An elementary proof of Tverberg's theorem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give a new proof of Tverberg's familiar theorem saying that an arbitrary set of $q=(d+1)(p-1)+1$ points in $\mathbb R^d$ can be split into $p$ parts whose convex hulls have a nonempty intersection. Bibl. – 9 titles.
			
            
            
            
          
        
      @article{ZNSL_2008_353_a5,
     author = {M. Yu. Zvagel'skii},
     title = {An elementary proof of {Tverberg's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {353},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/}
}
                      
                      
                    M. Yu. Zvagel'skii. An elementary proof of Tverberg's theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/