An elementary proof of Tverberg's theorem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We give a new proof of Tverberg's familiar theorem saying that an arbitrary set of $q=(d+1)(p-1)+1$ points in $\mathbb R^d$ can be split into $p$ parts whose convex hulls have a nonempty intersection. Bibl. – 9 titles.
@article{ZNSL_2008_353_a5,
     author = {M. Yu. Zvagel'skii},
     title = {An elementary proof of {Tverberg's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--61},
     year = {2008},
     volume = {353},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/}
}
TY  - JOUR
AU  - M. Yu. Zvagel'skii
TI  - An elementary proof of Tverberg's theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 54
EP  - 61
VL  - 353
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/
LA  - ru
ID  - ZNSL_2008_353_a5
ER  - 
%0 Journal Article
%A M. Yu. Zvagel'skii
%T An elementary proof of Tverberg's theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 54-61
%V 353
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/
%G ru
%F ZNSL_2008_353_a5
M. Yu. Zvagel'skii. An elementary proof of Tverberg's theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/

[1] H. Tverberg, “A generalization of Radon's theorem”, J. Lond. Math. Soc., 41 (1966), 123–128 | DOI | MR | Zbl

[2] J. Radon, “Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten”, Math. Ann., 83 (1921), 113–115 | DOI | MR | Zbl

[3] I. Bárány, “A generalization of Carathéodory's theorem”, Disc. Math., 40 (1982), 141–152 | DOI | MR | Zbl

[4] I. Bárány, S. B. Shlosman, A. Szűcs, “On a topological generalization of a theorem of Tverberg”, J. Lond. Math. Soc., 23 (1981), 158–164 | DOI | MR | Zbl

[5] M. de Longueville, The topological Tverberg theorem for prime powers, Seminar notes, Techn. Univ. Berlin, 1998

[6] K. S. Sarkaria, “Tverberg's theorem via number fields”, Israel J. Math., 79 (1992), 317–320 | DOI | MR | Zbl

[7] K. S. Sarkaria, “Tverberg partitions and Borsuk–Ulam theorems”, Pacific J. Math., 196 (2000), 231–241 | DOI | MR | Zbl

[8] S. A. Bogatyi, “Tsvetnaya teorema Tverberg”, Vestn. Mosk. univ., Ser. 1, Matem. Mekh., 1999, no. 3, 14–19 | MR | Zbl

[9] A. Yu. Volovikov, “K topologicheskomu obobscheniyu teoremy Tverberg”, Mat. zametki, 59 (1996), 454–456 | MR | Zbl