An elementary proof of Tverberg's theorem
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a new proof of Tverberg's familiar theorem saying that an arbitrary set of $q=(d+1)(p-1)+1$ points in $\mathbb R^d$ can be split into $p$ parts whose convex hulls have a nonempty intersection. Bibl. – 9 titles.
@article{ZNSL_2008_353_a5,
     author = {M. Yu. Zvagel'skii},
     title = {An elementary proof of {Tverberg's} theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {353},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/}
}
TY  - JOUR
AU  - M. Yu. Zvagel'skii
TI  - An elementary proof of Tverberg's theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2008
SP  - 54
EP  - 61
VL  - 353
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/
LA  - ru
ID  - ZNSL_2008_353_a5
ER  - 
%0 Journal Article
%A M. Yu. Zvagel'skii
%T An elementary proof of Tverberg's theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2008
%P 54-61
%V 353
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/
%G ru
%F ZNSL_2008_353_a5
M. Yu. Zvagel'skii. An elementary proof of Tverberg's theorem. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 10, Tome 353 (2008), pp. 54-61. http://geodesic.mathdoc.fr/item/ZNSL_2008_353_a5/