Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 158-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider one-dimensional system of auto-gravitating sticky particles with random initial speeds and describe the process of aggregation in terms of the largest cluster size $L_n$ at any fixed time prior to the critical time. We study the asymptotic behavior of $L_n$ for the warm gas, i.e., for a system of particles with nonzero initial speeds $v_i(0)=u_i$, where $(u_i)$ is a family of i.i.d. random variables with mean zero, unit variance and finite $p$-th moment $E(|u_i|^p)<\infty$, $p\ge 2$, and obtain sharp lower and upper bounds for $L_n(t)$.
@article{ZNSL_2007_351_a8,
     author = {V. F. Zakharova},
     title = {Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {158--179},
     year = {2007},
     volume = {351},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/}
}
TY  - JOUR
AU  - V. F. Zakharova
TI  - Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 158
EP  - 179
VL  - 351
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/
LA  - ru
ID  - ZNSL_2007_351_a8
ER  - 
%0 Journal Article
%A V. F. Zakharova
%T Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 158-179
%V 351
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/
%G ru
%F ZNSL_2007_351_a8
V. F. Zakharova. Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 158-179. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/

[1] J. C. Bonvin, Ph. A. Martin, J. Piasecki, X. Zotos, “Statistics of mass aggregation in a self-gravitating one-dimensional gas”, J. Statist. Phys., 91 (1998), 177–197 | DOI | Zbl

[2] A. Dermoune, “Probabilistic interpretation of sticky particle model”, Ann. Probab., 27 (1999), 1357–1367 | DOI | MR | Zbl

[3] A. Dermoune, “Sticky particle model and propagation of chaos”, Nonlinear Anal. Ser. A, 45 (2001), 529–541 | DOI | MR | Zbl

[4] E. W. Rykov, Yu. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl

[5] C. Giraud, “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Statist. Phys., 105 (2001), 585–604 | DOI | MR | Zbl

[6] M. A. Lifshits, Z. Shi, “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab., 33 (2005), 725–752 | DOI | MR

[7] Ph. A. Martin, J. Piasecki, “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Statist. Phys., 84 (1996), 837–857 | DOI | MR | Zbl

[8] S. F. Shandarin, Ya. B. Zeldovich, “The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium”, Rev. Modern Physics, 61 (1989), 185–220 | DOI | MR

[9] Ya. B. Zeldovich, “Gravitational instability: an approximate theory for large density perturbations”, Astronom. Astrophys., 5 (1970), 84–89

[10] P. Billingsli, Skhodimoct veroyatnostnykh mer, Nauka, M., 1977

[11] V. V. Vysotskii, “Energiya i klastery v sistemakh neuprugikh prityagivayuschikhsya chastits”, Teoriya veroyatn. i ee primen., 50 (2005), 241—265 | MR

[12] L. V. Kuoza, M. A. Lifshits, “Agregatsiya v odnomernoi modeli gaza s ustoichivymi nachalnymi dannymi”, Zap. nauchn. semin. POMI, 311, 2004, 161–178 | Zbl

[13] M. A. Lifshits, Gaussovskie sluchainye funktsii, TV i MS, Kiev, 1995

[14] S. V. Nagaev, “Nekotorye utochneniya veroyatnostnykh i momentnykh neravenstv”, Teoriya veroyatn. i ee primen., 42 (1997), 832–838 | MR | Zbl

[15] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Trudy In-ta Matematiki SO AN SSSR, 3, 1984, 4–49

[16] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, 2-e izd., Nauka, M., 1986

[17] T. Suidan, “Odnomernyi gravitatsionno vzaimodeistvuyuschii gaz i vypuklaya minoranta brounovskogo dvizheniya”, Uspekhi matem. nauk, 56:4 (2001), 73–96 | MR | Zbl