@article{ZNSL_2007_351_a8,
author = {V. F. Zakharova},
title = {Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--179},
year = {2007},
volume = {351},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/}
}
TY - JOUR AU - V. F. Zakharova TI - Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 158 EP - 179 VL - 351 UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/ LA - ru ID - ZNSL_2007_351_a8 ER -
V. F. Zakharova. Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 158-179. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/
[1] J. C. Bonvin, Ph. A. Martin, J. Piasecki, X. Zotos, “Statistics of mass aggregation in a self-gravitating one-dimensional gas”, J. Statist. Phys., 91 (1998), 177–197 | DOI | Zbl
[2] A. Dermoune, “Probabilistic interpretation of sticky particle model”, Ann. Probab., 27 (1999), 1357–1367 | DOI | MR | Zbl
[3] A. Dermoune, “Sticky particle model and propagation of chaos”, Nonlinear Anal. Ser. A, 45 (2001), 529–541 | DOI | MR | Zbl
[4] E. W. Rykov, Yu. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl
[5] C. Giraud, “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Statist. Phys., 105 (2001), 585–604 | DOI | MR | Zbl
[6] M. A. Lifshits, Z. Shi, “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab., 33 (2005), 725–752 | DOI | MR
[7] Ph. A. Martin, J. Piasecki, “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Statist. Phys., 84 (1996), 837–857 | DOI | MR | Zbl
[8] S. F. Shandarin, Ya. B. Zeldovich, “The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium”, Rev. Modern Physics, 61 (1989), 185–220 | DOI | MR
[9] Ya. B. Zeldovich, “Gravitational instability: an approximate theory for large density perturbations”, Astronom. Astrophys., 5 (1970), 84–89
[10] P. Billingsli, Skhodimoct veroyatnostnykh mer, Nauka, M., 1977
[11] V. V. Vysotskii, “Energiya i klastery v sistemakh neuprugikh prityagivayuschikhsya chastits”, Teoriya veroyatn. i ee primen., 50 (2005), 241—265 | MR
[12] L. V. Kuoza, M. A. Lifshits, “Agregatsiya v odnomernoi modeli gaza s ustoichivymi nachalnymi dannymi”, Zap. nauchn. semin. POMI, 311, 2004, 161–178 | Zbl
[13] M. A. Lifshits, Gaussovskie sluchainye funktsii, TV i MS, Kiev, 1995
[14] S. V. Nagaev, “Nekotorye utochneniya veroyatnostnykh i momentnykh neravenstv”, Teoriya veroyatn. i ee primen., 42 (1997), 832–838 | MR | Zbl
[15] A. I. Sakhanenko, “Skorost skhodimosti v printsipe invariantnosti dlya raznoraspredelennykh velichin s eksponentsialnymi momentami”, Trudy In-ta Matematiki SO AN SSSR, 3, 1984, 4–49
[16] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, 2-e izd., Nauka, M., 1986
[17] T. Suidan, “Odnomernyi gravitatsionno vzaimodeistvuyuschii gaz i vypuklaya minoranta brounovskogo dvizheniya”, Uspekhi matem. nauk, 56:4 (2001), 73–96 | MR | Zbl