Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 158-179
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider one-dimensional system of auto-gravitating sticky particles with random initial speeds and describe the process of aggregation in terms of the largest cluster size $L_n$ at any
fixed time prior to the critical time. We study the asymptotic behavior of $L_n$ for the warm gas, i.e., for a system of particles with nonzero initial speeds $v_i(0)=u_i$, where $(u_i)$
is a family of i.i.d. random variables with mean zero, unit variance and finite $p$-th moment $E(|u_i|^p)\infty$, $p\ge 2$, and obtain sharp lower and upper bounds for $L_n(t)$.
@article{ZNSL_2007_351_a8,
author = {V. F. Zakharova},
title = {Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {158--179},
publisher = {mathdoc},
volume = {351},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/}
}
TY - JOUR AU - V. F. Zakharova TI - Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds JO - Zapiski Nauchnykh Seminarov POMI PY - 2007 SP - 158 EP - 179 VL - 351 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/ LA - ru ID - ZNSL_2007_351_a8 ER -
%0 Journal Article %A V. F. Zakharova %T Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds %J Zapiski Nauchnykh Seminarov POMI %D 2007 %P 158-179 %V 351 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/ %G ru %F ZNSL_2007_351_a8
V. F. Zakharova. Aggregation rates in one-dimensional stochastic gas model with finite polynomial moments of particle speeds. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 12, Tome 351 (2007), pp. 158-179. http://geodesic.mathdoc.fr/item/ZNSL_2007_351_a8/