The Neumann problem for semilinear elliptic equation in thin cylinder.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that the least energy solution of the boundary value problem $$ \begin{cases} -\Delta u+u=|u|^{q-2}u&\text{ in }Q \\ \frac{\partial u}{\partial\mathbf n}=0&\text{ on }\partial Q \end{cases} $$ is a constant for all $q\in(2;2^*]$ if $Q\subset\mathbb R^n$ ($n\ge 3$) is a sufficiently thin cylinder.
@article{ZNSL_2007_348_a9,
     author = {A. P. Shcheglova},
     title = {The {Neumann} problem for semilinear elliptic equation in thin cylinder.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {272--302},
     year = {2007},
     volume = {348},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/}
}
TY  - JOUR
AU  - A. P. Shcheglova
TI  - The Neumann problem for semilinear elliptic equation in thin cylinder.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 272
EP  - 302
VL  - 348
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/
LA  - ru
ID  - ZNSL_2007_348_a9
ER  - 
%0 Journal Article
%A A. P. Shcheglova
%T The Neumann problem for semilinear elliptic equation in thin cylinder.
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 272-302
%V 348
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/
%G ru
%F ZNSL_2007_348_a9
A. P. Shcheglova. The Neumann problem for semilinear elliptic equation in thin cylinder.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/

[1] A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Problemy mat. analiza, 27, T. Rozhkovskaya, Novosibirsk, 2004, 109–136

[2] A. I. Nazarov, “O tochnoi konstante v odnomernoi teoreme vlozheniya”, Problemy mat. analiza, 19, Nauchnaya kniga, Novosibirsk, 1999, 149–163

[3] A. I. Nazarov, “O tochnykh konstantakh v odnomernykh teoremakh vlozheniya proizvolnogo poryadka”, Voprosy sovremennoi teorii approksimatsii, Izd. SPbGU, 2004, 146–158

[4] N. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. in Pure and Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Izd. 2, Nauka, M., 1973 | MR

[6] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. on Pure and Appl. Math., 14:2 (1961), 415–426 | DOI | MR | Zbl

[7] P. L. Lions, F. Pacella, and M. Tricarico, “Best constant in Sobolev inequalities for functions vanishimg on some part of the boundary and related questions”, Indiana Univ. Math. J., 37:2 (1998), 301–324 | DOI | MR

[8] J.-O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics, 1381, Springer-Verlag, New York, 1989 | MR | Zbl