@article{ZNSL_2007_348_a9,
author = {A. P. Shcheglova},
title = {The {Neumann} problem for semilinear elliptic equation in thin cylinder.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {272--302},
year = {2007},
volume = {348},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/}
}
A. P. Shcheglova. The Neumann problem for semilinear elliptic equation in thin cylinder.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/
[1] A. I. Nazarov, A. P. Scheglova, “O nekotorykh svoistvakh ekstremali v variatsionnoi zadache, porozhdennoi teoremoi vlozheniya Soboleva”, Problemy mat. analiza, 27, T. Rozhkovskaya, Novosibirsk, 2004, 109–136
[2] A. I. Nazarov, “O tochnoi konstante v odnomernoi teoreme vlozheniya”, Problemy mat. analiza, 19, Nauchnaya kniga, Novosibirsk, 1999, 149–163
[3] A. I. Nazarov, “O tochnykh konstantakh v odnomernykh teoremakh vlozheniya proizvolnogo poryadka”, Voprosy sovremennoi teorii approksimatsii, Izd. SPbGU, 2004, 146–158
[4] N. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. in Pure and Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl
[5] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Izd. 2, Nauka, M., 1973 | MR
[6] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. on Pure and Appl. Math., 14:2 (1961), 415–426 | DOI | MR | Zbl
[7] P. L. Lions, F. Pacella, and M. Tricarico, “Best constant in Sobolev inequalities for functions vanishimg on some part of the boundary and related questions”, Indiana Univ. Math. J., 37:2 (1998), 301–324 | DOI | MR
[8] J.-O. Strömberg, A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Mathematics, 1381, Springer-Verlag, New York, 1989 | MR | Zbl