The Neumann problem for semilinear elliptic equation in thin cylinder.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that the least energy solution of the boundary value problem
$$
\begin{cases}
-\Delta u+u=|u|^{q-2}u\text{ in }Q
\\
\frac{\partial u}{\partial\mathbf n}=0\text{ on }\partial Q
\end{cases}
$$
is a constant for all $q\in(2;2^*]$ if $Q\subset\mathbb R^n$ ($n\ge 3$) is a sufficiently thin cylinder.
@article{ZNSL_2007_348_a9,
author = {A. P. Shcheglova},
title = {The {Neumann} problem for semilinear elliptic equation in thin cylinder.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {272--302},
publisher = {mathdoc},
volume = {348},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/}
}
A. P. Shcheglova. The Neumann problem for semilinear elliptic equation in thin cylinder.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/