The Neumann problem for semilinear elliptic equation in thin cylinder.
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the least energy solution of the boundary value problem $$ \begin{cases} -\Delta u+u=|u|^{q-2}u\text{ in }Q \\ \frac{\partial u}{\partial\mathbf n}=0\text{ on }\partial Q \end{cases} $$ is a constant for all $q\in(2;2^*]$ if $Q\subset\mathbb R^n$ ($n\ge 3$) is a sufficiently thin cylinder.
@article{ZNSL_2007_348_a9,
     author = {A. P. Shcheglova},
     title = {The {Neumann} problem for semilinear elliptic equation in thin cylinder.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {272--302},
     publisher = {mathdoc},
     volume = {348},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/}
}
TY  - JOUR
AU  - A. P. Shcheglova
TI  - The Neumann problem for semilinear elliptic equation in thin cylinder.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 272
EP  - 302
VL  - 348
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/
LA  - ru
ID  - ZNSL_2007_348_a9
ER  - 
%0 Journal Article
%A A. P. Shcheglova
%T The Neumann problem for semilinear elliptic equation in thin cylinder.
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 272-302
%V 348
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/
%G ru
%F ZNSL_2007_348_a9
A. P. Shcheglova. The Neumann problem for semilinear elliptic equation in thin cylinder.. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 272-302. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a9/