@article{ZNSL_2007_348_a5,
author = {S. I. Repin},
title = {Functional a posteriori estimates},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--164},
year = {2007},
volume = {348},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a5/}
}
S. I. Repin. Functional a posteriori estimates. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 38, Tome 348 (2007), pp. 147-164. http://geodesic.mathdoc.fr/item/ZNSL_2007_348_a5/
[1] M. Bildhauer and S. Repin, “Estimates for the deviation from exact solutions of variational problems with power growth functionals”, Zap. Nauchn. Semin. POMI, 336, 2006, 5–24 | MR | Zbl
[2] M. Bildhauer, M. Fuchs, and S. Repin, “A posteriori error estimates for stationary slow flows of power–law fluids”, International J. Non-Newtonian Fluid Mech., 142 (2007), 112–122 | DOI | Zbl
[3] M. Bildhauer, M. Fuchs, and S. Repin, “A functional type a posteriori error analysis of the functional type for the Ramberg–Osgood model”, ZAMM (to appear)
[4] M. Bildhauer and S. Repin, “Estimates for the deviation from exact solutions of variational problems with power growth functionals”, Zap. Nauchn. Semin. POMI, 336, 2006, 5–24 | MR | Zbl
[5] H. Buss and S. Repin, “A posteriori error estimates for boundary-value problems with obstacles”, Numerical mathematics and advanced applications (Jyvaskyla, 1999), World Sci. Publishing, River Edge, NJ, 2000, 162–170 | MR | Zbl
[6] G. Duvaut and J.-L. Lions, Les inequations en mecanique et en physique, Dunod, Paris, 1972 | MR | Zbl
[7] A. Friedman, Variational principles and free-boundary problems, Wiley and Sons, New York, 1982 | MR
[8] M. Fuchs and S. Repin, “Estimates for the deviation from the exact solutions of variational problems modeling certain classes of generalized Newtonian fluids”, Math. Meth. Appl. Sci., 29 (2006), 2225–2244 | DOI | MR | Zbl
[9] M. Fuchs and G. A. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., 1749, Springer, Berlin, 2000 | MR | Zbl
[10] R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New York, 1982 | MR
[11] P. Neittaanmäki and S. Repin, Reliable methods for computer simulation estimates, Studies in Mathematics and its Applications, 33, Elsevier, Amsterdam, 2004 | MR | Zbl
[12] S. Repin, “A posteriori estimates for approximate solutions of variational problems with strongly convex functionals”, Problems of Mathematical Analysis, 17, 1997, 199–226 | Zbl
[13] S. Repin, “A posteriori estimates of the accuracy of variational methods for problems with nonconvex functionals”, Algebra Analiz, 11:4 (1999), 151–182 | MR | Zbl
[14] S. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Semin. POMI, 243, 1997, 201–214 | MR | Zbl
[15] S. Repin, “A posteriori error estimation for variational problems with uniformly convex functionals”, Math. Comput., 69(230) (2000), 481–500 | MR | Zbl
[16] S. Repin, “Two-sided estimates of deviation from exact solutions of uniformly elliptic equations”, Proc. St.Petersburg Math. Soc. V. IX, Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc., Providence, RI, 2003, 143–171 | MR
[17] S. Repin, “Estimates of deviation from exact solutions of initial-boundary value problems for the heat equation”, Rend. Mat. Acc. Lincei, 13 (2002), 121–133 | MR | Zbl
[18] S. Repin, “Estimates of deviations from exact solutions of elliptic variational inequalities”, Zap. Nauchn. Semin. POMI, 271, 2000, 188–203 | MR | Zbl
[19] S. Repin and J. Valdman, “A posteriori error estimates for problems with nonlinear boundary conditions”, J. Numer. Math. (to appear)
[20] S. I. Repin and L. S. Xanthis, “A posteriori error estimation for elasto-plastic problems based on duality theory”, Comput. Methods Appl. Mech. Engrg., 138 (1996), 317–339 | DOI | MR | Zbl