A finite element method for solving singular boundary-value problems
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 149-159

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that under certain assumptions on the functions $q(t)$ and $f(t)$, there is one and only one function $u_0(t)\in\overset{o}W{}^1_2(a,b)$ at which the functional $$ \int^b_a[u'(t)]^2 dt+\int^b_a q(t)u^2(t)dt-2\int^b_a f(t)u(t)dt $$ attains its minimum. An error bound for the finite element method for computing the function $u_0(t)$ in terms of $q(t)$, $f(t)$, and the meshsize $h$ is presented.
@article{ZNSL_2007_346_a10,
     author = {M. N. Yakovlev},
     title = {A finite element method for solving singular boundary-value problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--159},
     publisher = {mathdoc},
     volume = {346},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a10/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - A finite element method for solving singular boundary-value problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2007
SP  - 149
EP  - 159
VL  - 346
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a10/
LA  - ru
ID  - ZNSL_2007_346_a10
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T A finite element method for solving singular boundary-value problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2007
%P 149-159
%V 346
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a10/
%G ru
%F ZNSL_2007_346_a10
M. N. Yakovlev. A finite element method for solving singular boundary-value problems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XX, Tome 346 (2007), pp. 149-159. http://geodesic.mathdoc.fr/item/ZNSL_2007_346_a10/