On property $D(2)$ and common splitting field of two biquaternion algebras
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 242-250 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $F$ be a field of characteristic $\ne 2$. We say that $F$ has property $D(2)$ if for any quadratic extension $L/F$ and any two binary quadratic forms over $F$ having a common nonzero value over $L$ this value can be chosen in $F$. There exist examples of fields of characteristic 0 which do not satisfy property $D(2)$. However, as far as we know, such examples of positive characteristic have not been constructed. In this note we show that if $k$ is a field of characteristic $\ne 2$ such that $\|k^*/{k^*}^2\|\ge 4$, then for the field $k(x)$ property $D(2)$ does not hold. Using this we construct two biquaternion algebras over a field $K=k(x)((t))((u))$ such that their sum is a quaternion algebra, but they do not have a common biquadratic (i.e. a field of the kind $K(\sqrt a,\sqrt b)$, where $a,b\in K^*$) splitting field.
@article{ZNSL_2006_338_a11,
     author = {A. S. Sivatski},
     title = {On property $D(2)$ and common splitting field of two biquaternion algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {242--250},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a11/}
}
TY  - JOUR
AU  - A. S. Sivatski
TI  - On property $D(2)$ and common splitting field of two biquaternion algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 242
EP  - 250
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a11/
LA  - ru
ID  - ZNSL_2006_338_a11
ER  - 
%0 Journal Article
%A A. S. Sivatski
%T On property $D(2)$ and common splitting field of two biquaternion algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 242-250
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a11/
%G ru
%F ZNSL_2006_338_a11
A. S. Sivatski. On property $D(2)$ and common splitting field of two biquaternion algebras. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 242-250. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a11/

[1] D. W. Hoffmann, J.-P. Tignol, “On $14$-dimensional quadratic forms in $I^3$, $8$-dimensional forms in $I^2$, and the common value property”, Doc. Math., 1998, 189–214 | MR | Zbl

[2] O. T. Izhboldin, “Fields of $u$-invariant $9$”, Ann. Math., 154 (2001), 529–587 | DOI | MR | Zbl

[3] O. T. Izhboldin, N. A. Karpenko, “Some new examples in the theory of quadratic forms”, Math. Z, 234 (2000), 647–695 | DOI | MR | Zbl

[4] W. Scharlau, Quadratic and Hermitian forms, Springer, Berlin et al., 1985 | MR

[5] D. B. Shapiro, J.-P. Tignol, A. R. Wardsworth, “Witt rings and Brauer groups under multiquadratic extensions, II”, J. Algebra, 78 (1982), 58–90 | DOI | MR | Zbl

[6] A. S. Sivatski, “Nonexcellence of the function field of the product of two conics”, $K$-theory, 34 (2005), 209–218 | DOI | MR | Zbl

[7] L. J. Risman, “Zero divisors in tensor products of division algebras”, Proc. Amer. Math. Soc., 51 (1975), 35–36 | DOI | MR | Zbl