On some elements of the Brauer group of a conic
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 227-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main purpose of this paper is to strenghen the author's results in articles [7] and [8]. Let $k$ be a field of characteristic $\ne 2$, $n\ge 2$. Suppose that elements $\overline{a},\overline{b_1},\dots,\overline{b_n}\in k^*/{k^*}^2$ are linearly independent over $\mathbb Z/2\mathbb Z$. We construct a field extension $K/k$ and a quaternion algebra $D=(u,v)$ over $K$ such that 1) The field $K$ has no proper extension of odd degree. 2) The $u$-invariant of $K$ equals 4. 3) The multiquadratic extension $K(\sqrt{b_1},\dots,\sqrt{b_n})/K$ is not 4-excellent, and the quadratic form $\langle uv,-u,-v,a\rangle$ provides a corresponding counterexample. 4) The division algebra $A=D\otimes_E (a,t_0)\otimes_E (b_1,t_1)\dots\otimes_E (b_n,t_n)$ does not decompose into a tensor product of two nontrivial central simple algebras over $E$, where $E=K((t_0))((t_1))\dots((t_n))$ is the Laurent series field in variables $t_0,t_1,\dots,t_n$. 5) $\operatorname{ind}A=2^{n+1}$. In particular, the algebra $A$ provides an example of an indecomposable algebra of index $2^{n+1}$ over a field, whose $u$-invariant and 2-cohomological dimension equal $2^{n+3}$ and $n+3$, respectively.
@article{ZNSL_2006_338_a10,
     author = {A. S. Sivatski},
     title = {On some elements of the {Brauer} group of a~conic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {227--241},
     year = {2006},
     volume = {338},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a10/}
}
TY  - JOUR
AU  - A. S. Sivatski
TI  - On some elements of the Brauer group of a conic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 227
EP  - 241
VL  - 338
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a10/
LA  - ru
ID  - ZNSL_2006_338_a10
ER  - 
%0 Journal Article
%A A. S. Sivatski
%T On some elements of the Brauer group of a conic
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 227-241
%V 338
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a10/
%G ru
%F ZNSL_2006_338_a10
A. S. Sivatski. On some elements of the Brauer group of a conic. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 227-241. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a10/

[1] S. Amitsur, L. Rowen, J.-P. Tignol, “Division algebras of degree $4$ and $8$ with involution”, Israel J. Math., 33 (1979), 133–148 | DOI | MR | Zbl

[2] B. Kahn, “Quelques remarques sur le $U$-invariant”, Sém. Th. Nombres Bordeaux, 1990, no. 2, 155–161 | MR | Zbl

[3] T. Y. Lam, D. B. Leep, J.-P. Tignol, “Biquaternion algebras and quartic extensions”, Pub. Math. IHES, 77 (1993), 63–102 | MR | Zbl

[4] A. S. Merkurev, “O simvole normennogo vycheta stepeni $2$”, Dokl. AN SSSR, 261:3 (1981), 542–547 | MR

[5] A. S. Merkurev, “Prostye algebry i kvadratichnye formy”, Izv. AN SSSR, Ser. matem., 55 (1991), 218–224 | MR

[6] L. H. Rowen, “Central simple algebras”, Israel J. Math., 29 (1978), 285–301 | DOI | MR | Zbl

[7] A. S. Sivatski, “Nonexcellence of multiquadratic field extensions”, J. Algebra, 275:2 (2004), 859–866 | DOI | MR | Zbl

[8] A. S. Sivatski, “On indecomposable algebras of exponent $2$”, Israel J. Math (to appear) | MR

[9] A. S. Sivatskii, Invarianty v algebraicheskoi teorii kvadratichnykh form, Kand. diss., Sankt-Peterburgskii Gosudarstvennyi Universitet, 1988

[10] A. A. Suslin, “Kvaternionnyi gomomorfizm dlya polei funktsii na konike”, Dokl. AN SSSR, 265:2 (1982), 292–297 | MR