On some elements of the Brauer group of a~conic
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 227-241
Voir la notice de l'article provenant de la source Math-Net.Ru
The main purpose of this paper is to strenghen the author's results in articles [7] and [8]. Let $k$ be a field of characteristic $\ne 2$, $n\ge 2$. Suppose that elements $\overline{a},\overline{b_1},\dots,\overline{b_n}\in k^*/{k^*}^2$ are linearly independent over $\mathbb Z/2\mathbb Z$. We construct a field extension $K/k$ and a quaternion algebra $D=(u,v)$
over $K$ such that
1) The field $K$ has no proper extension of odd degree.
2) The $u$-invariant of $K$ equals 4.
3) The multiquadratic extension $K(\sqrt{b_1},\dots,\sqrt{b_n})/K$ is not 4-excellent, and the quadratic form $\langle uv,-u,-v,a\rangle$ provides a corresponding counterexample.
4) The division algebra
$A=D\otimes_E (a,t_0)\otimes_E (b_1,t_1)\dots\otimes_E (b_n,t_n)$ does not decompose into a tensor product of two nontrivial central simple algebras over $E$, where $E=K((t_0))((t_1))\dots((t_n))$ is the Laurent series field in variables $t_0,t_1,\dots,t_n$.
5) $\operatorname{ind}A=2^{n+1}$.
In particular, the algebra $A$ provides an example of an indecomposable algebra of index $2^{n+1}$ over a field, whose $u$-invariant and 2-cohomological dimension equal $2^{n+3}$ and $n+3$, respectively.
@article{ZNSL_2006_338_a10,
author = {A. S. Sivatski},
title = {On some elements of the {Brauer} group of a~conic},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {227--241},
publisher = {mathdoc},
volume = {338},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a10/}
}
A. S. Sivatski. On some elements of the Brauer group of a~conic. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 14, Tome 338 (2006), pp. 227-241. http://geodesic.mathdoc.fr/item/ZNSL_2006_338_a10/