Voir la notice du chapitre de livre
@article{ZNSL_2006_337_a15,
author = {O. M. Fomenko},
title = {The behavior of {Riesz} means of the coefficients of a~symmetric square $L$-function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {274--286},
year = {2006},
volume = {337},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/}
}
O. M. Fomenko. The behavior of Riesz means of the coefficients of a symmetric square $L$-function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/
[1] G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc. (3), 31 (1975), 79–98 | DOI | MR | Zbl
[2] O. M. Fomenko, “Tozhdestva, vklyuchayuschie koeffitsienty avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 247–256 | MR | Zbl
[3] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Lect. Notes Math., 899, 1981, 148–165 | MR | Zbl
[4] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arithm., 60 (1992), 389–415 | MR | Zbl
[5] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edition, Oxford, 1986 | MR | Zbl
[6] A. Ivić, K. Matsumoto, Y. Tanigawa, “On Riesz means of the coefficients of the Rankin–Selberg series”, Math. Proc. Camb. Phil. Soc., 127 (1999), 117–131 | DOI | MR | Zbl
[7] A. Ivić, The Riemann zeta-function, Wiley, New York etc., 1985 | MR | Zbl
[8] P. D. T. A. Elliott, “On the mean value of $f(p)$”, Proc. London Math. Soc. (3), 21 (1970), 28–96 | DOI | MR | Zbl
[9] M. Jutila, A method in the theory of exponential sums, Bombay, 1987
[10] F. V. Atkinson, “A divisor problem”, Quart. J. Math. Oxford Ser., 12 (1941), 193–200 | DOI | MR | Zbl
[11] K.-C. Tong, “On divisor problems, III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl
[12] A. Sankaranarayanan, “Fundamental properties of symmetric square $L$-functions, I”, Illinois J. Math., 46 (2002), 23–43 | MR | Zbl