The behavior of Riesz means of the coefficients of a~symmetric square $L$-function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $k$ with respect to $SL(2,\mathbb Z)$ and let $L(s,\mathrm{sym}^2f)=\sum_{n=1}^\infty c_nn^{-s}$, $\operatorname{Re}s>1$, be the symmetric square $L$-function associated with $f$. Represent the Riesz mean $(\rho\ge 0)$ $$ \frac1{\Gamma(\rho+1)}\sum_{n\le x}'(x-n)^\rho c_n=:D_{\rho}(x;\mathrm{sym}^2 f) $$ as the sum of the “residue function” $\Gamma(\rho+1)^{-1}L(0,\mathrm{sym}^2f)x^\rho$ and the “error term” $$ D_\rho(x;\mathrm{sym}^2f)=\frac{L(0,\mathrm{sym}^2f)}{\Gamma(\rho+1)}x^\rho+\Delta_\rho(x;\mathrm{sym}^2f). $$ Using the Voronoi formula for $\Delta_\rho(x;\mathrm{sym}^2f)$, obtained earlier (see Zap. Nauchn. Semin. POMI. 314, 247–256 (2004)), the integral $$ \int_1^X\Delta_\rho{(x;\mathrm{sym}^2f)}^2\,dx, $$ is estimated. In this way, an asymptotics for $0\rho\leqslant1$ and an upper bound for $\rho=0$ are obtained. Also the existence of a limiting distribution for the function $$ x^{-\frac23\rho-\frac13}\Delta_\rho(x;\mathrm{sym}^2f), \quad 0\rho\leqslant1, $$ and, as a corollary, for the function $$ x^{-\frac23\rho-\frac13}D_{\rho}(x;\mathrm{sym}^2f), \quad 0\rho1. $$ is established. Bibliography: 12 titles.
@article{ZNSL_2006_337_a15,
     author = {O. M. Fomenko},
     title = {The behavior of {Riesz} means of the coefficients of a~symmetric square $L$-function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {274--286},
     publisher = {mathdoc},
     volume = {337},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - The behavior of Riesz means of the coefficients of a~symmetric square $L$-function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 274
EP  - 286
VL  - 337
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/
LA  - ru
ID  - ZNSL_2006_337_a15
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T The behavior of Riesz means of the coefficients of a~symmetric square $L$-function
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 274-286
%V 337
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/
%G ru
%F ZNSL_2006_337_a15
O. M. Fomenko. The behavior of Riesz means of the coefficients of a~symmetric square $L$-function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/