The behavior of Riesz means of the coefficients of a symmetric square $L$-function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $k$ with respect to $SL(2,\mathbb Z)$ and let $L(s,\mathrm{sym}^2f)=\sum_{n=1}^\infty c_nn^{-s}$, $\operatorname{Re}s>1$, be the symmetric square $L$-function associated with $f$. Represent the Riesz mean $(\rho\ge 0)$ $$ \frac1{\Gamma(\rho+1)}\sum_{n\le x}'(x-n)^\rho c_n=:D_{\rho}(x;\mathrm{sym}^2 f) $$ as the sum of the “residue function” $\Gamma(\rho+1)^{-1}L(0,\mathrm{sym}^2f)x^\rho$ and the “error term” $$ D_\rho(x;\mathrm{sym}^2f)=\frac{L(0,\mathrm{sym}^2f)}{\Gamma(\rho+1)}x^\rho+\Delta_\rho(x;\mathrm{sym}^2f). $$ Using the Voronoi formula for $\Delta_\rho(x;\mathrm{sym}^2f)$, obtained earlier (see Zap. Nauchn. Semin. POMI. 314, 247–256 (2004)), the integral $$ \int_1^X\Delta_\rho{(x;\mathrm{sym}^2f)}^2\,dx, $$ is estimated. In this way, an asymptotics for $0<\rho\leqslant1$ and an upper bound for $\rho=0$ are obtained. Also the existence of a limiting distribution for the function $$ x^{-\frac23\rho-\frac13}\Delta_\rho(x;\mathrm{sym}^2f), \quad 0<\rho\leqslant1, $$ and, as a corollary, for the function $$ x^{-\frac23\rho-\frac13}D_{\rho}(x;\mathrm{sym}^2f), \quad 0<\rho<1. $$ is established. Bibliography: 12 titles.
@article{ZNSL_2006_337_a15,
     author = {O. M. Fomenko},
     title = {The behavior of {Riesz} means of the coefficients of a~symmetric square $L$-function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {274--286},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - The behavior of Riesz means of the coefficients of a symmetric square $L$-function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 274
EP  - 286
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/
LA  - ru
ID  - ZNSL_2006_337_a15
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T The behavior of Riesz means of the coefficients of a symmetric square $L$-function
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 274-286
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/
%G ru
%F ZNSL_2006_337_a15
O. M. Fomenko. The behavior of Riesz means of the coefficients of a symmetric square $L$-function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/

[1] G. Shimura, “On the holomorphy of certain Dirichlet series”, Proc. London Math. Soc. (3), 31 (1975), 79–98 | DOI | MR | Zbl

[2] O. M. Fomenko, “Tozhdestva, vklyuchayuschie koeffitsienty avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 314, 2004, 247–256 | MR | Zbl

[3] J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions”, Lect. Notes Math., 899, 1981, 148–165 | MR | Zbl

[4] D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arithm., 60 (1992), 389–415 | MR | Zbl

[5] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edition, Oxford, 1986 | MR | Zbl

[6] A. Ivić, K. Matsumoto, Y. Tanigawa, “On Riesz means of the coefficients of the Rankin–Selberg series”, Math. Proc. Camb. Phil. Soc., 127 (1999), 117–131 | DOI | MR | Zbl

[7] A. Ivić, The Riemann zeta-function, Wiley, New York etc., 1985 | MR | Zbl

[8] P. D. T. A. Elliott, “On the mean value of $f(p)$”, Proc. London Math. Soc. (3), 21 (1970), 28–96 | DOI | MR | Zbl

[9] M. Jutila, A method in the theory of exponential sums, Bombay, 1987

[10] F. V. Atkinson, “A divisor problem”, Quart. J. Math. Oxford Ser., 12 (1941), 193–200 | DOI | MR | Zbl

[11] K.-C. Tong, “On divisor problems, III”, Acta Math. Sinica, 6 (1956), 515–541 | MR | Zbl

[12] A. Sankaranarayanan, “Fundamental properties of symmetric square $L$-functions, I”, Illinois J. Math., 46 (2002), 23–43 | MR | Zbl