The behavior of Riesz means of the coefficients of a~symmetric square $L$-function
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $f(z)$ be a holomorphic Hecke eigencuspform of even weight $k$ with respect to $SL(2,\mathbb Z)$ and let $L(s,\mathrm{sym}^2f)=\sum_{n=1}^\infty c_nn^{-s}$, $\operatorname{Re}s>1$, be the symmetric square $L$-function associated with $f$. Represent the Riesz mean $(\rho\ge 0)$
$$
\frac1{\Gamma(\rho+1)}\sum_{n\le x}'(x-n)^\rho c_n=:D_{\rho}(x;\mathrm{sym}^2 f)
$$
as the sum of the “residue function” $\Gamma(\rho+1)^{-1}L(0,\mathrm{sym}^2f)x^\rho$ and the “error term”
$$
D_\rho(x;\mathrm{sym}^2f)=\frac{L(0,\mathrm{sym}^2f)}{\Gamma(\rho+1)}x^\rho+\Delta_\rho(x;\mathrm{sym}^2f).
$$
Using the Voronoi formula for $\Delta_\rho(x;\mathrm{sym}^2f)$, obtained earlier (see Zap. Nauchn. Semin. POMI. 314, 247–256 (2004)), the integral
$$
\int_1^X\Delta_\rho{(x;\mathrm{sym}^2f)}^2\,dx,
$$
is estimated. In this way, an asymptotics for $0\rho\leqslant1$ and an upper bound for $\rho=0$ are obtained. Also the existence of a limiting distribution for the function
$$
x^{-\frac23\rho-\frac13}\Delta_\rho(x;\mathrm{sym}^2f), \quad 0\rho\leqslant1,
$$
and, as a corollary, for the function
$$
x^{-\frac23\rho-\frac13}D_{\rho}(x;\mathrm{sym}^2f), \quad 0\rho1.
$$
is established. Bibliography: 12 titles.
			
            
            
            
          
        
      @article{ZNSL_2006_337_a15,
     author = {O. M. Fomenko},
     title = {The behavior of {Riesz} means of the coefficients of a~symmetric square $L$-function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {274--286},
     publisher = {mathdoc},
     volume = {337},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/}
}
                      
                      
                    O. M. Fomenko. The behavior of Riesz means of the coefficients of a~symmetric square $L$-function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 274-286. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a15/