On the Dirichlet series related to the cubic theta function
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 212-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper studies the function $L(\tau;\cdot)$ defined by the Dirichlet series $$ L(\tau;s)=\sum_\nu\frac{\tau(\nu)}{\|\nu\|^s}, \quad s\in\mathbb C, $$ where $\tau(\nu)$ is the $\nu$th Fourier coefficient of the Kubota?Patterson cubic theta function. For this function, an exact and an approximate functional equations are derived. It is established that the function does not vanish in the halfplane $\operatorname{RE}s\ge 1.3533$ and has no singularities except for a simple pole at the point 5/6. Issues related to computing the coefficients $\tau(\nu)$ and values of the special functions arising in the approximate functional equation are considered. Bibliography: 11 titles.
@article{ZNSL_2006_337_a11,
     author = {N. V. Proskurin},
     title = {On the {Dirichlet} series related to the cubic theta function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {212--232},
     year = {2006},
     volume = {337},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a11/}
}
TY  - JOUR
AU  - N. V. Proskurin
TI  - On the Dirichlet series related to the cubic theta function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 212
EP  - 232
VL  - 337
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a11/
LA  - ru
ID  - ZNSL_2006_337_a11
ER  - 
%0 Journal Article
%A N. V. Proskurin
%T On the Dirichlet series related to the cubic theta function
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 212-232
%V 337
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a11/
%G ru
%F ZNSL_2006_337_a11
N. V. Proskurin. On the Dirichlet series related to the cubic theta function. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 21, Tome 337 (2006), pp. 212-232. http://geodesic.mathdoc.fr/item/ZNSL_2006_337_a11/

[1] T. Kubota,, “On automorphic functions and reciprocity law in a number theory”, Lect. in Math. Kyoto Univ., 2, 1969 | MR | Zbl

[2] S. J. Patterson, “A cubic analogue of the theta series, I, II”, J. Reine und Angew. Math., 296 (1977), 125–161, 217–220 | DOI | MR | Zbl

[3] N. V. Proskurin, Cubic metaplectic forms and theta functions, Lect. Notes in Math., 1677, Springer-Verlag, 1998 | MR | Zbl

[4] D. A. Hejhal, “Zeros of Epstein zeta functions and supercomputers”, Proc. of the International Congress of Math., vol. 1, 2 (Berkley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, 1362–1384 | MR

[5] A. Strömbergsson, Studies in the analytic and spectral theory of automorphic forms, Uppsala dissertations in math. 17, Uppsala Univ., 2001 | MR

[6] K. Ireland, M. Rosen, A classical introduction to modern number theory, Graduate Texts in Math., 87, Springer-Verlag, 1982 | MR

[7] A. Weil, Basic number theory, Springer-Verlag, 1967 | MR

[8] F. W. J. Olver, Introduction to asymptotics and special functions, Academic Press, New York, London, 1974 | MR

[9] A. F. Lavrik, “O funktsionalnykh uravneniyakh funktsii Dirikhle”, Izv. AN SSSR, 31:2 (1967), 431–442 | MR | Zbl

[10] A. F. Lavrik, “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv. AN SSSR, 32:1 (1968), 134–185 | MR | Zbl

[11] R. M. Kaufman, “Ob ukorochennykh uravneniyakh A. F. Lavrika”, Zap. nauchn. semin. LOMI, 76, 1978, 124–158 | MR | Zbl