Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 153-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For domains $\Omega$ with piecewise smooth boundaries the generalized solution $u\in W^2_2(\Omega)$ of the equation $\Delta_x^2u=f$ with the boundary conditions $u=\Delta_xu=0$ in general cannot be obtained by solving iteratively a system of two Poisson equations under homogeneous Dirichlet conditions. Such a system is obtained by setting $v=-\Delta u$. In the two-dimensional case this fact is known as the Sapongyan paradox in the theory of simply supported polygonal plates. In the present paper the three-dimensional problem is investigated for a domain with a smooth edge $\Gamma$. If the variable opening angle $\alpha\in C^\infty(\Gamma)$ is less than $\pi$ everywhere on the edge, the boundary value problem for the bi-harmonic equation is equivalent to the iterated Dirichlet problem and its solution $u$ inherits the positivity preserving property from these problems. In the case that $\alpha\in(\pi,2\pi)$ the procedure of solving the two Dirichlet problems must be modified by permitting an infinite-dimensional kernel and co-kernel of operators and determining the solution $u\in W^2_2(\Omega)$ through inverting a certain integral operator on the contour $\Gamma$. If $\alpha(s)\in(3\pi/2,2\pi)$ for a point $s\in\Gamma$ then there exists a non-negative function $f\in L_2(\Omega)$ for which the solution $u$ changes sign inside the domain $\Omega$. In the case of the crack, that is ($\alpha=2\pi$ everywhere on $\Gamma$), one needs to introduce a special scale of weighted function spaces. Also there the positivity preserving property fails. In some geometrical situations the questions of a correct setting for the boundary value problem of the bi-harmonic equation and the positivity property remain open.
@article{ZNSL_2006_336_a7,
     author = {S. A. Nazarov and G. H. Sweers},
     title = {Boundary value problems for the bi-harmonic equation and for the iterated {Laplacian} in a three-dimensional domain with an edge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {153--198},
     year = {2006},
     volume = {336},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/}
}
TY  - JOUR
AU  - S. A. Nazarov
AU  - G. H. Sweers
TI  - Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 153
EP  - 198
VL  - 336
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/
LA  - ru
ID  - ZNSL_2006_336_a7
ER  - 
%0 Journal Article
%A S. A. Nazarov
%A G. H. Sweers
%T Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 153-198
%V 336
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/
%G ru
%F ZNSL_2006_336_a7
S. A. Nazarov; G. H. Sweers. Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 153-198. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/

[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[2] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[3] M. Sh. Birman, “Variatsionnye metody resheniya kraevykh zadach, analogichnye metodu Trefttsa”, Vestnik LGU. Seriya matem., mekh. i astr., 13:3 (1956), 69–89 | MR | Zbl

[4] O. M. Sapondzhyan, Izgib tonkikh uprugikh plit, Aiastan, Erevan, 1975

[5] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Ob izgibe blizkoi k mnogougolnoi plastiny so svobodno opertym kraem”, Izvestiya VUZ'ov. Matem., 1983, no. 8, 34–40 | MR

[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[7] W. G. Mazja, S. S. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, 1, Akademie-Verlag, Berlin, 1991

[8] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izvestiya VUZ'ov. Matem., 1962, no. 5, 11–21 | MR | Zbl

[9] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, T. 1, Metsniereba, Tbilisi, 1973, 171–181

[10] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 6:10 (1970), 1831–1843

[11] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | MR | Zbl

[12] S. A. Nazarov, B. A. Plamenevskii, “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Problemy matem. analiza, 13, izd-vo SPbGU, SPb, 1992, 106–147

[13] S. A. Nazarov, B. A. Plamenevskii, “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Matem. sbornik, 183:10 (1992), 13–44 | MR

[14] S. A. Nazarov, “Otsenki vblizi rebra resheniya zadachi Neimana dlya ellipticheskoi sistemy”, Vestnik LGU, 1:1 (1988), 37–42 | MR | Zbl

[15] S. A. Nazarov, B. A. Plamenevskii, “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Trudy leningradskogo matem. obschestva, 1, 1990, 174–211 | MR

[16] T. Boggio, “Sull'equilibrio delle piastre elastiche incastrate”, Rend. Acc. Lincei, 10 (1901), 197–205 | Zbl

[17] T. Boggio, “Sulle funzioni di Green d'ordine $m$”, Rend. Circ. Mat. Palermo, 20 (1905), 97–135 | DOI | Zbl

[18] J. Hadamard, “Sur certains cas intéressants du problème biharmonique”, IV-e Congr. Intern. Mat. Rome, 1909, 12–14 | Zbl

[19] J. Hadamard, Mémoire sur le problème d'analyse relatif à l'\'{ }équilibre des plaques élastiques incastrées, Mémoires présentés par divers savants a l'Académie des Sciences, 33, 1908, 128 | Zbl

[20] R. J. Duffin, “On a question of Hadamard concerning super-biharmonic functions”, J. Math. Phys., 27 (1949), 253–258 | MR | Zbl

[21] P. R. Garabedian, “A partial differential equation arising in conformal mapping”, Pacific J. Math., 1 (1951), 485–524 | MR | Zbl

[22] Ch. Loewner, “On generation of solutions of the biharmonic equation in the plane by conformal mappings”, Pacific J. Math., 3 (1953), 417–436 | MR | Zbl

[23] G. Szegö, “Remarks on the preceeding paper of Charles Loewner”, Pacific J. Math., 3 (1953), 437–446 | MR | Zbl

[24] S. Osher, “On Green's function for the biharmonic equation in a right angle wedge”, J. Math. Anal. Appl., 43 (1973), 705–716 | DOI | MR | Zbl

[25] C. V. Coffman, R. J. Duffin, “On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle”, Adv. Appl. Math., 1 (1980), 373–389 | DOI | MR | Zbl

[26] C. V. Coffman, “On the structure of solutions to $\Delta^2 u=\lambda u$ which satisfy the clamped plate condition on a right angle”, SIAM J. Math. Anal., 13 (1982), 746–757 | DOI | MR | Zbl

[27] V. V. Kozlov, V. A. Kondratev, V. G. Mazya, “O smene znaka i otsutstvii “silnykh” nulei reshenii ellipticheskikh uravnenii”, Izvestiya AN SSSR. Ser. matem., 53:2 (1989), 328–344 | MR | Zbl

[28] H. S. Shapiro, M. Tegmark, “An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign”, SIAM Rev., 36 (1994), 99–101 | DOI | MR | Zbl

[29] G. Sweers, “When is the first eigenfunction for the clamped plate equation of fixed sign?”, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), Electron. J. Diff. Equ. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001, 285–296 | MR

[30] H.-Ch. Grunau, G. Sweers, “Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions”, Math. Nachr., 179 (1996), 89–102 | DOI | MR

[31] H.-Ch. Grunau, G. Sweers, “Positivity for equations involving polyharmonic elliptic operators with Dirichlet boundary conditions”, Math. Ann., 307 (1997), 589–626 | DOI | MR

[32] A. Dall'Acqua, G. Sweers, “The clamped plate equation for the Limaçon”, Annali di Matematica, 184 (2005), 361–374 | DOI | MR

[33] S. A. Nazarov, “Ob asimptotike po parametru resheniya ellipticheskoi kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differentsialnye uravneniya i ikh primeneniya, Vyp. 30, izd-vo AN LitSSR, Vilnyus, 1981, 27–46

[34] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[35] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl

[36] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 13:11 (1977), 2026–2032 | MR

[37] V. A. Nikishkin, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestnik Moskovskogo universiteta, 2 (1979), 51–62 | MR | Zbl

[38] V. G. Maz'ya, J. Rossmann, “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR

[39] A. D. Aleksandrov, N. Yu. Netsvetaev, Geometriya, Nauka, M., 1990 | MR

[40] S. A. Nazarov, “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekhanika tverdogo tela, 2 (1989), 152–160 | MR

[41] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI

[42] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi rebra”, Dokl. AN SSSR, 1 (1976), 33–36

[43] V. G. Maz'ya, J. Rossmann, Über die Lösbarkeit und die Asymptotik der Lösungen elliptischer Randwertaufgaben in Gebieten mit Kanten, Preprint 31/84 Karl-Weierstrass-Inst. Math. Berlin, 1984

[44] M. Costabel, M. Dauge, “Stable asymptotics for elliptic systems on plane domains with corners”, Commun. in Partial Diff. Equations, 19 (1994), 1677–1726 | DOI | MR | Zbl

[45] V. G. Maz'ya, J. Rossmann, “Stable asymptotics of solutions to the Dirichlet problem for elliptic equations of second order in domains with angular points or edges”, Operator Theory: Advances and Applications, 57, 1992, 215–224 | MR

[46] V. G. Mazya, B. A. Plamenevskii, “Ellipticheskie kraevye zadachi na mnogoobraziyakh s osobennostyami”, Problemy matem. analiza, Vyp. 6, izd-vo LGU, Leningrad, 1977, 85–142