@article{ZNSL_2006_336_a7,
author = {S. A. Nazarov and G. H. Sweers},
title = {Boundary value problems for the bi-harmonic equation and for the iterated {Laplacian} in a three-dimensional domain with an edge},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {153--198},
year = {2006},
volume = {336},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/}
}
TY - JOUR AU - S. A. Nazarov AU - G. H. Sweers TI - Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 153 EP - 198 VL - 336 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/ LA - ru ID - ZNSL_2006_336_a7 ER -
%0 Journal Article %A S. A. Nazarov %A G. H. Sweers %T Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 153-198 %V 336 %U http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/ %G ru %F ZNSL_2006_336_a7
S. A. Nazarov; G. H. Sweers. Boundary value problems for the bi-harmonic equation and for the iterated Laplacian in a three-dimensional domain with an edge. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 153-198. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a7/
[1] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[2] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[3] M. Sh. Birman, “Variatsionnye metody resheniya kraevykh zadach, analogichnye metodu Trefttsa”, Vestnik LGU. Seriya matem., mekh. i astr., 13:3 (1956), 69–89 | MR | Zbl
[4] O. M. Sapondzhyan, Izgib tonkikh uprugikh plit, Aiastan, Erevan, 1975
[5] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Ob izgibe blizkoi k mnogougolnoi plastiny so svobodno opertym kraem”, Izvestiya VUZ'ov. Matem., 1983, no. 8, 34–40 | MR
[6] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[7] W. G. Mazja, S. S. Nazarov, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, 1, Akademie-Verlag, Berlin, 1991
[8] M. Sh. Birman, G. E. Skvortsov, “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izvestiya VUZ'ov. Matem., 1962, no. 5, 11–21 | MR | Zbl
[9] V. G. Mazya, B. A. Plamenevskii, “Ob elliptichnosti kraevykh zadach v oblastyakh s kusochno gladkoi granitsei”, Tr. simpoziuma po mekh. sploshnykh sred i rodstvennym probl. analiza, T. 1, Metsniereba, Tbilisi, 1973, 171–181
[10] V. A. Kondratev, “O gladkosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 6:10 (1970), 1831–1843
[11] S. A. Nazarov, B. A. Plamenevskii, “Samosopryazhennye zadachi s usloviyami izlucheniya na rebrakh granitsy”, Algebra i analiz, 4:3 (1992), 196–225 | MR | Zbl
[12] S. A. Nazarov, B. A. Plamenevskii, “Obobschennaya formula Grina dlya ellipticheskikh zadach v oblastyakh s rebrami”, Problemy matem. analiza, 13, izd-vo SPbGU, SPb, 1992, 106–147
[13] S. A. Nazarov, B. A. Plamenevskii, “Ellipticheskie zadachi s usloviyami izlucheniya na rebrakh granitsy”, Matem. sbornik, 183:10 (1992), 13–44 | MR
[14] S. A. Nazarov, “Otsenki vblizi rebra resheniya zadachi Neimana dlya ellipticheskoi sistemy”, Vestnik LGU, 1:1 (1988), 37–42 | MR | Zbl
[15] S. A. Nazarov, B. A. Plamenevskii, “Zadacha Neimana dlya samosopryazhennykh ellipticheskikh sistem v oblasti s kusochno gladkoi granitsei”, Trudy leningradskogo matem. obschestva, 1, 1990, 174–211 | MR
[16] T. Boggio, “Sull'equilibrio delle piastre elastiche incastrate”, Rend. Acc. Lincei, 10 (1901), 197–205 | Zbl
[17] T. Boggio, “Sulle funzioni di Green d'ordine $m$”, Rend. Circ. Mat. Palermo, 20 (1905), 97–135 | DOI | Zbl
[18] J. Hadamard, “Sur certains cas intéressants du problème biharmonique”, IV-e Congr. Intern. Mat. Rome, 1909, 12–14 | Zbl
[19] J. Hadamard, Mémoire sur le problème d'analyse relatif à l'\'{ }équilibre des plaques élastiques incastrées, Mémoires présentés par divers savants a l'Académie des Sciences, 33, 1908, 128 | Zbl
[20] R. J. Duffin, “On a question of Hadamard concerning super-biharmonic functions”, J. Math. Phys., 27 (1949), 253–258 | MR | Zbl
[21] P. R. Garabedian, “A partial differential equation arising in conformal mapping”, Pacific J. Math., 1 (1951), 485–524 | MR | Zbl
[22] Ch. Loewner, “On generation of solutions of the biharmonic equation in the plane by conformal mappings”, Pacific J. Math., 3 (1953), 417–436 | MR | Zbl
[23] G. Szegö, “Remarks on the preceeding paper of Charles Loewner”, Pacific J. Math., 3 (1953), 437–446 | MR | Zbl
[24] S. Osher, “On Green's function for the biharmonic equation in a right angle wedge”, J. Math. Anal. Appl., 43 (1973), 705–716 | DOI | MR | Zbl
[25] C. V. Coffman, R. J. Duffin, “On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle”, Adv. Appl. Math., 1 (1980), 373–389 | DOI | MR | Zbl
[26] C. V. Coffman, “On the structure of solutions to $\Delta^2 u=\lambda u$ which satisfy the clamped plate condition on a right angle”, SIAM J. Math. Anal., 13 (1982), 746–757 | DOI | MR | Zbl
[27] V. V. Kozlov, V. A. Kondratev, V. G. Mazya, “O smene znaka i otsutstvii “silnykh” nulei reshenii ellipticheskikh uravnenii”, Izvestiya AN SSSR. Ser. matem., 53:2 (1989), 328–344 | MR | Zbl
[28] H. S. Shapiro, M. Tegmark, “An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign”, SIAM Rev., 36 (1994), 99–101 | DOI | MR | Zbl
[29] G. Sweers, “When is the first eigenfunction for the clamped plate equation of fixed sign?”, Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), Electron. J. Diff. Equ. Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001, 285–296 | MR
[30] H.-Ch. Grunau, G. Sweers, “Positivity for perturbations of polyharmonic operators with Dirichlet boundary conditions in two dimensions”, Math. Nachr., 179 (1996), 89–102 | DOI | MR
[31] H.-Ch. Grunau, G. Sweers, “Positivity for equations involving polyharmonic elliptic operators with Dirichlet boundary conditions”, Math. Ann., 307 (1997), 589–626 | DOI | MR
[32] A. Dall'Acqua, G. Sweers, “The clamped plate equation for the Limaçon”, Annali di Matematica, 184 (2005), 361–374 | DOI | MR
[33] S. A. Nazarov, “Ob asimptotike po parametru resheniya ellipticheskoi kraevoi zadachi s periodicheskimi koeffitsientami v tsilindre”, Differentsialnye uravneniya i ikh primeneniya, Vyp. 30, izd-vo AN LitSSR, Vilnyus, 1981, 27–46
[34] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR
[35] V. A. Kozlov, V. G. Maz'ya, J. Rossmann, Elliptic boundary value problems in domains with point singularities, Amer. Math. Soc., Providence, 1997 | MR | Zbl
[36] V. A. Kondratev, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Differentsialnye uravneniya, 13:11 (1977), 2026–2032 | MR
[37] V. A. Nikishkin, “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka v okrestnosti rebra”, Vestnik Moskovskogo universiteta, 2 (1979), 51–62 | MR | Zbl
[38] V. G. Maz'ya, J. Rossmann, “Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR
[39] A. D. Aleksandrov, N. Yu. Netsvetaev, Geometriya, Nauka, M., 1990 | MR
[40] S. A. Nazarov, “Vyvod variatsionnogo neravenstva dlya formy malogo prirascheniya treschiny otryva”, Mekhanika tverdogo tela, 2 (1989), 152–160 | MR
[41] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblasti s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI
[42] V. G. Mazya, B. A. Plamenevskii, “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach vblizi rebra”, Dokl. AN SSSR, 1 (1976), 33–36
[43] V. G. Maz'ya, J. Rossmann, Über die Lösbarkeit und die Asymptotik der Lösungen elliptischer Randwertaufgaben in Gebieten mit Kanten, Preprint 31/84 Karl-Weierstrass-Inst. Math. Berlin, 1984
[44] M. Costabel, M. Dauge, “Stable asymptotics for elliptic systems on plane domains with corners”, Commun. in Partial Diff. Equations, 19 (1994), 1677–1726 | DOI | MR | Zbl
[45] V. G. Maz'ya, J. Rossmann, “Stable asymptotics of solutions to the Dirichlet problem for elliptic equations of second order in domains with angular points or edges”, Operator Theory: Advances and Applications, 57, 1992, 215–224 | MR
[46] V. G. Mazya, B. A. Plamenevskii, “Ellipticheskie kraevye zadachi na mnogoobraziyakh s osobennostyami”, Problemy matem. analiza, Vyp. 6, izd-vo LGU, Leningrad, 1977, 85–142