Voir la notice du chapitre de livre
@article{ZNSL_2006_336_a3,
author = {N. M. Ivochkina},
title = {Weakly first-order interior estimates and {Hessian} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--66},
year = {2006},
volume = {336},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a3/}
}
N. M. Ivochkina. Weakly first-order interior estimates and Hessian equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 37, Tome 336 (2006), pp. 55-66. http://geodesic.mathdoc.fr/item/ZNSL_2006_336_a3/
[1] N. V. Krylov, “Unconditional solvability of the Bellman equations with constant coefficients in convex domains”, Math. USSR-Sb., 63:2 (1989), 289–303 | DOI | MR | Zbl
[2] N. V. Krylov, “Weak interior second order derivative estimates for degenerate for nonlinear elliptic equations”, Diff. Int. Eqns., 7 (1994), 133–156 | MR | Zbl
[3] N. V. Krylov, Lectures on fully nonlinear second order elliptic equations, Rudolph–Lipschitz–Vorlesung, No 29, Vorlesungsreihe, Rheinische Friedrich–Wilhelms–Universitat, Bonn, 1994
[4] N. M. Ivochkina, N. Trudinger, X.-J. Wand, “The Dirichlet problem for degenerate Hessian equations”, Comm. Part. Diff. Eqns., 29 (2004), 219–235 | DOI | MR | Zbl
[5] L. Caffarelli, L. Nirenberg, J. Spruck, “Dirichlet problem for nonlinear second order elliptic equations III: Functions of the eigenvalues of the Hessian”, Acta Math., 155 (1985), 261–301 | DOI | MR | Zbl
[6] N. S. Trudinger, “On the Dirichlet problem for Hessian equations”, Acta Math., 175 (1995), 151–164 | DOI | MR | Zbl
[7] Math. USSR Sb., 50 (1985), 259–268 | DOI | MR | Zbl
[8] L. Garding, “An inequality for hyperbolic polynomials”, J. Math. Mech., 8 (1959), 957–965 | MR | Zbl
[9] M. G. Crandall, “Semidifferential quadratic forms and fully nonlinear elliptic equations of second order”, Ann. Inst. H. Poincare Anal. Non Lineaire, 6 (1989), 419–435 | MR | Zbl
[10] J. Math. Sci., 101 (2000), 3503–3511 | DOI | MR | Zbl
[11] St. Petersburg Math. J., 4 (1993), 1169–1189 | MR | Zbl