@article{ZNSL_2006_334_a9,
author = {L. Yu. Kolotilina},
title = {Filling the gap between the {Gerschgorin} and {Brualdi} theorems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {128--148},
year = {2006},
volume = {334},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a9/}
}
L. Yu. Kolotilina. Filling the gap between the Gerschgorin and Brualdi theorems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 128-148. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a9/
[1] Kh. D. Ikramov, Nesimmetrichnaya problema sobstvennykh znachenii, Nauka, M., 1991 | MR
[2] L. Yu. Kolotilina, “O teoreme Brualdi”, Zap. nauchn. semin. POMI, 284, 2002, 48–63 | MR
[3] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl
[4] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, II”, Zap. nauchn. semin. POMI, 296, 2003, 60–88 | MR | Zbl
[5] L. Yu. Kolotilina, “Problema vyrozhdennosti/nevyrozhdennosti dlya matrits, udovletvoryayuschikh usloviyam diagonalnogo preobladaniya, formuliruemym v terminakh orientirovannykh grafov”, Zap. nauchn. semin. POMI, 309, 2004, 40–83 | MR | Zbl
[6] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, III”, Zap. nauchn. semin. POMI, 323, 2005, 69–93 | MR | Zbl
[7] A. Brauer, “Limits for the characteristic roots of a matrix, II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl
[8] R. Brualdi, “Matrices, eigenvalues, and directed graphs”, Linear Multilinear Algebra, 11 (1982), 143–165 | DOI | MR | Zbl
[9] M. Fiedler, V. Pták, “Cyclic products and an inequality for determinants”, Czechoslovak Math. J., 19 (1969), 428–450 | MR
[10] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985 | MR | Zbl
[11] L. Yu. Kolotilina, “Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices”, Linear Algebra Appl., 359 (2003), 133–159 | DOI | MR | Zbl
[12] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl
[13] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl
[14] A. M. Ostrowsky, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR
[15] R. S. Varga, Gers̆gorin and His Circles, Springer Series Comput. Math., 36, Springer, 2004 | MR
[16] R. S. Varga, A. Krautstengl, “On Gers̆gorin-type problems and ovals of Cassini”, ETNA (Electronic Transactions on Numerical Analysis), 8, 1999, 15–20 | MR | Zbl