Filling the gap between the Gerschgorin and Brualdi theorems
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 128-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents new diagonal dominance type nonsingularity conditions for $n\times n$ matrices formulated in terms of circuits of length not exceeding a fixed number $r\ge 0$ and simple paths of length $r$ in the digraph of the matrix. These conditions are intermediate between the diagonal dominance conditions in terms of all paths of length $r$ and Brualdi's diagonal dominance conditions, involving all the circuits. For $r=0$, the new conditions reduce to the standard row diagonal dominance conditions $|a_{ii}|\ge\sum\limits_{j\ne i}|a_{ij}|$, $i=1,\dots,n$, whereas for $r=n$ they coincide with the Brualdi circuit conditions. Thus, they connect the classical Lévy–Desplanques theorem and the Brualdi theorem, yielding a family of sufficient nonsingularity conditions. Further, for irreducible matrices satisfying the new diagonal dominance conditions with nonstrict inequalities, the singularity/nonsingularity problem is solved. Also the new sufficient diagonal dominance conditions are extended to the so-called mixed conditions, simultaneously involving the deleted row and column sums of an arbitrary finite set of matrices diagonally conjugated to a given one, which, in the simplest nontrivial case, reduce to the old-known Ostrowski conditions $|a_{ii}|>(\sum\limits_{j\ne i}|a_{ij}|)^\alpha\;(\sum\limits_{j\ne i} |a_{ji}|)^{1-\alpha}$, $i=1,\dots,n$, $0\le\alpha\le 1$. The nonsingularity conditions obtained are used to provide new eigenvalue inclusion sets, depending on $r$, which, as $r$ varies from 0 to $n$, serve as a bridge connecting the union of Gerschgorin's disks with the Brualdi inclusion set.
@article{ZNSL_2006_334_a9,
     author = {L. Yu. Kolotilina},
     title = {Filling the gap between the {Gerschgorin} and {Brualdi} theorems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--148},
     year = {2006},
     volume = {334},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a9/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - Filling the gap between the Gerschgorin and Brualdi theorems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 128
EP  - 148
VL  - 334
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a9/
LA  - ru
ID  - ZNSL_2006_334_a9
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T Filling the gap between the Gerschgorin and Brualdi theorems
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 128-148
%V 334
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a9/
%G ru
%F ZNSL_2006_334_a9
L. Yu. Kolotilina. Filling the gap between the Gerschgorin and Brualdi theorems. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 128-148. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a9/

[1] Kh. D. Ikramov, Nesimmetrichnaya problema sobstvennykh znachenii, Nauka, M., 1991 | MR

[2] L. Yu. Kolotilina, “O teoreme Brualdi”, Zap. nauchn. semin. POMI, 284, 2002, 48–63 | MR

[3] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy”, Zap. nauchn. semin. POMI, 284, 2002, 77–122 | MR | Zbl

[4] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, II”, Zap. nauchn. semin. POMI, 296, 2003, 60–88 | MR | Zbl

[5] L. Yu. Kolotilina, “Problema vyrozhdennosti/nevyrozhdennosti dlya matrits, udovletvoryayuschikh usloviyam diagonalnogo preobladaniya, formuliruemym v terminakh orientirovannykh grafov”, Zap. nauchn. semin. POMI, 309, 2004, 40–83 | MR | Zbl

[6] L. Yu. Kolotilina, “Otsenki i neravenstva dlya perronovskogo kornya neotritsatelnoi matritsy, III”, Zap. nauchn. semin. POMI, 323, 2005, 69–93 | MR | Zbl

[7] A. Brauer, “Limits for the characteristic roots of a matrix, II”, Duke Math. J., 14 (1947), 21–26 | DOI | MR | Zbl

[8] R. Brualdi, “Matrices, eigenvalues, and directed graphs”, Linear Multilinear Algebra, 11 (1982), 143–165 | DOI | MR | Zbl

[9] M. Fiedler, V. Pták, “Cyclic products and an inequality for determinants”, Czechoslovak Math. J., 19 (1969), 428–450 | MR

[10] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985 | MR | Zbl

[11] L. Yu. Kolotilina, “Nonsingularity/singularity criteria for nonstrictly block diagonally dominant matrices”, Linear Algebra Appl., 359 (2003), 133–159 | DOI | MR | Zbl

[12] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl

[13] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl

[14] A. M. Ostrowsky, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR

[15] R. S. Varga, Gers̆gorin and His Circles, Springer Series Comput. Math., 36, Springer, 2004 | MR

[16] R. S. Varga, A. Krautstengl, “On Gers̆gorin-type problems and ovals of Cassini”, ETNA (Electronic Transactions on Numerical Analysis), 8, 1999, 15–20 | MR | Zbl