Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 68-77

Voir la notice de l'article provenant de la source Math-Net.Ru

MINRES-N is a minimal residual algorithm originally developed by the authors for solving systems of linear equations with normal coefficient matrices whose spectra lie on algebraic curves of low degree. In a previous publication, the authors showed that a variant of MINRES-N called MINRES-N2 is applicable to nonnormal matrices $A$ for which $$ \mathrm{rank}\,(A-A^*)=1. $$ This fact is extended to nonnormal matrices $A$ such that $$ \mathrm{rank}\,(A-A^*)=k, \qquad k\ge1. $$
@article{ZNSL_2006_334_a4,
     author = {M. Dana and Kh. D. Ikramov},
     title = {Solving systems of linear equations whose matrices are low-rank perturbations of {Hermitian} matrices, revisited},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--77},
     publisher = {mathdoc},
     volume = {334},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/}
}
TY  - JOUR
AU  - M. Dana
AU  - Kh. D. Ikramov
TI  - Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2006
SP  - 68
EP  - 77
VL  - 334
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/
LA  - ru
ID  - ZNSL_2006_334_a4
ER  - 
%0 Journal Article
%A M. Dana
%A Kh. D. Ikramov
%T Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited
%J Zapiski Nauchnykh Seminarov POMI
%D 2006
%P 68-77
%V 334
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/
%G ru
%F ZNSL_2006_334_a4
M. Dana; Kh. D. Ikramov. Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 68-77. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/