Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 68-77
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			MINRES-N is a minimal residual algorithm originally developed by the authors for solving systems of linear equations with normal coefficient matrices whose spectra lie on algebraic curves of low degree. In a previous publication, the authors showed that a variant of MINRES-N
called MINRES-N2 is applicable to nonnormal matrices $A$ for which
$$ 
\mathrm{rank}\,(A-A^*)=1.
$$ 
This fact is  extended to nonnormal matrices $A$ such that 
$$
\mathrm{rank}\,(A-A^*)=k, \qquad k\ge1. 
$$
            
            
            
          
        
      @article{ZNSL_2006_334_a4,
     author = {M. Dana and Kh. D. Ikramov},
     title = {Solving systems of linear equations whose matrices are low-rank perturbations of {Hermitian} matrices, revisited},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {68--77},
     publisher = {mathdoc},
     volume = {334},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/}
}
                      
                      
                    TY - JOUR AU - M. Dana AU - Kh. D. Ikramov TI - Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 68 EP - 77 VL - 334 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/ LA - ru ID - ZNSL_2006_334_a4 ER -
%0 Journal Article %A M. Dana %A Kh. D. Ikramov %T Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 68-77 %V 334 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/ %G ru %F ZNSL_2006_334_a4
M. Dana; Kh. D. Ikramov. Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 68-77. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/