Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 68-77
Cet article a éte moissonné depuis la source Math-Net.Ru
MINRES-N is a minimal residual algorithm originally developed by the authors for solving systems of linear equations with normal coefficient matrices whose spectra lie on algebraic curves of low degree. In a previous publication, the authors showed that a variant of MINRES-N called MINRES-N2 is applicable to nonnormal matrices $A$ for which $$ \mathrm{rank}\,(A-A^*)=1. $$ This fact is extended to nonnormal matrices $A$ such that $$ \mathrm{rank}\,(A-A^*)=k, \qquad k\ge1. $$
@article{ZNSL_2006_334_a4,
author = {M. Dana and Kh. D. Ikramov},
title = {Solving systems of linear equations whose matrices are low-rank perturbations of {Hermitian} matrices, revisited},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--77},
year = {2006},
volume = {334},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/}
}
TY - JOUR AU - M. Dana AU - Kh. D. Ikramov TI - Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited JO - Zapiski Nauchnykh Seminarov POMI PY - 2006 SP - 68 EP - 77 VL - 334 UR - http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/ LA - ru ID - ZNSL_2006_334_a4 ER -
%0 Journal Article %A M. Dana %A Kh. D. Ikramov %T Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited %J Zapiski Nauchnykh Seminarov POMI %D 2006 %P 68-77 %V 334 %U http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/ %G ru %F ZNSL_2006_334_a4
M. Dana; Kh. D. Ikramov. Solving systems of linear equations whose matrices are low-rank perturbations of Hermitian matrices, revisited. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XIX, Tome 334 (2006), pp. 68-77. http://geodesic.mathdoc.fr/item/ZNSL_2006_334_a4/
[1] M. Dana, A. G. Zykov, Kh. D. Ikramov, “Metod minimalnykh nevyazok dlya spetsialnogo klassa lineinykh sistem s normalnymi matritsami koeffitsientov”, Zh. vychisl. matem. matem. fiz., 45 (2005), 1928–1937 | MR | Zbl
[2] M. Dana, Kh. D. Ikramov, “O reshenii sistem lineinykh uravnenii, matritsy kotorykh yavlyayutsya malorangovymi vozmuscheniyami ermitovykh matrits”, Vestn. MGU. Seriya “Vychisl. matematika i kibernetika”, 2005, no. 1, 15–22 | MR | Zbl