An isoperimetric problem for tetrahedra
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 28-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that a regular tetrahedron has the maximal possible surface area among tetrahedra with unit geodesic diameter of surface. An independent proof of O'Rourk–Schevon's theorem about polar points on a convex polyhedron is given. A. D. Aleksandrov's general problem on the area of a convex surface with fixed geodesic diameter is dicussed.
@article{ZNSL_2005_329_a2,
     author = {V. A. Zalgaller},
     title = {An isoperimetric problem for tetrahedra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {28--55},
     year = {2005},
     volume = {329},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a2/}
}
TY  - JOUR
AU  - V. A. Zalgaller
TI  - An isoperimetric problem for tetrahedra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 28
EP  - 55
VL  - 329
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a2/
LA  - ru
ID  - ZNSL_2005_329_a2
ER  - 
%0 Journal Article
%A V. A. Zalgaller
%T An isoperimetric problem for tetrahedra
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 28-55
%V 329
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a2/
%G ru
%F ZNSL_2005_329_a2
V. A. Zalgaller. An isoperimetric problem for tetrahedra. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 28-55. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a2/

[1] V. Blyashke, Krug i shar, Nauka, M., 1967 | MR

[2] S. T. Yau, “Problem section”, Seminar of Differential Geometry, Ann. of Math. Studies, 102, Princeton Univ. Press, Princeton, NJ, 1982, 669–706 | MR

[3] J. O'Rourk, C. A. Schevon, Preprint 27708-0129 Duke Univ., Durham, North Carolina, 1993

[4] A. D. Aleksandrov, Vypuklye mnogogranniki, GITTL, M.–L., 1950 | MR