Maxwell equations and direction of electromagnetic field
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 118-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mapping $F\colon U\to\Lambda_2(M_0)$, $U\subset\mathbb R^4$, satisfying the Maxwell equations is regarded as the tensor of a certain electromagnetic field (EM-field) in vacuum. The EM-field is described on the basis of a special decomposition $F=e\omega+h(\ast\omega)$, where the mapping $\omega\colon U\to G^1$ is called the direction of the EM-field, and $e\colon U\to (0,+\infty)$ and $h\colon U\to\mathbb R$ are the electric and magnetic coefficients of the EM-field. The Maxwell equations are reformulated in terms of $\omega$, $e$, and $h$. EM-fields whose set of directions is a point or a one-dimensional subset of $G^1$ are considered.
@article{ZNSL_2005_329_a10,
     author = {R. Ya. Nizkii},
     title = {Maxwell equations and direction of electromagnetic field},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--146},
     year = {2005},
     volume = {329},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a10/}
}
TY  - JOUR
AU  - R. Ya. Nizkii
TI  - Maxwell equations and direction of electromagnetic field
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 118
EP  - 146
VL  - 329
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a10/
LA  - ru
ID  - ZNSL_2005_329_a10
ER  - 
%0 Journal Article
%A R. Ya. Nizkii
%T Maxwell equations and direction of electromagnetic field
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 118-146
%V 329
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a10/
%G ru
%F ZNSL_2005_329_a10
R. Ya. Nizkii. Maxwell equations and direction of electromagnetic field. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 9, Tome 329 (2005), pp. 118-146. http://geodesic.mathdoc.fr/item/ZNSL_2005_329_a10/

[1] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, 5-e izd., Editorial URSS, M., 2001 | MR

[2] D. V. Ivanov, Geometriya mnogoobraziya napravlenii fizicheskogo prostranstva, Dissertatsiya kand. fiz.-matem. nauk, S.-Pb., 2003

[3] S. E. Kozlov, Matematicheskie osnovy spetsialnoi teorii otnositelnosti i prostranstvo Lobachevskogo, SPbGU, S.-Pb., 1995

[4] S. E. Kozlov, Geometriya veschestvennykh grassmanovykh mnogoobrazii, Zap. nauchn. semin. POMI, 246, 1997 ; | MR | Zbl | Zbl

[5] S. E. Kozlov, “Topologiya i lorents-invariantnaya psevdorimanova metrika mnogoobraziya napravlenii v fizicheskom prostranstve”, Zap. nauchn. semin. POMI, 246, 1997, 141–151 | MR | Zbl

[6] L. D. Landau, E. M. Lifshits, Teoriya polya, 6-e izd., Nauka, M., 1973

[7] V. F. Osipov, Struktura prostranstva-vremeni: vektornaya algebra i analiz, SPbGU, S.-Pb., 1995