Two families of normality tests based on Polya characterization, and their efficiency
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 147-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For testing of normality we introduce two families of statistics based on extended Polya characterization of the normal law. The first family depends on parameter $a\in(0,1)$, and for any $a$ its members are asymptotically normal and consistent for many alternatives of interest. We study the local Bahadur efficiency of these statistics as a function of $a$ and find that for common alternatives the Polya case $a=1/\sqrt{2}$ is the worst and the maximum of efficiency is attained for $a$ close to 0 or 1. The second family depends on natural $m$ and the efficiency increases when $m$ grows.
@article{ZNSL_2005_328_a7,
     author = {V. V. Litvinova and Ya. Yu. Nikitin},
     title = {Two families of normality tests based on {Polya} characterization, and their efficiency},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--159},
     year = {2005},
     volume = {328},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/}
}
TY  - JOUR
AU  - V. V. Litvinova
AU  - Ya. Yu. Nikitin
TI  - Two families of normality tests based on Polya characterization, and their efficiency
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 147
EP  - 159
VL  - 328
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/
LA  - ru
ID  - ZNSL_2005_328_a7
ER  - 
%0 Journal Article
%A V. V. Litvinova
%A Ya. Yu. Nikitin
%T Two families of normality tests based on Polya characterization, and their efficiency
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 147-159
%V 328
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/
%G ru
%F ZNSL_2005_328_a7
V. V. Litvinova; Ya. Yu. Nikitin. Two families of normality tests based on Polya characterization, and their efficiency. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 147-159. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/

[1] A. M. Kagan, Yu. V. Linnik, S. R. Rao, Kharakterizatsionnye zadachi matematicheskoi statistiki, Nauka, M., 1972 | MR

[2] V. S. Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova Dumka, Kiev, 1989 | MR

[3] Yu. V. Linnik, “Lineinye statistiki i normalnyi zakon raspredeleniya”, Dokl. AN SSSR, 83:3 (1952), 353–355 | MR | Zbl

[4] Yu. V. Linnik, “Lineinye formy i statisticheskie kriterii, I, II”, Ukr. matem. zh., 5:2–3 (1953), 207–243, 247–290 | MR

[5] V. V. Litvinova, Asimptoticheskie svoistva kriteriev simmetrii i soglasiya, osnovannykh na kharakterizatsiyakh, Kand. diss. SPbGU, 2004

[6] Ya. Yu. Nikitin, Asimptoticheskaya effektivnost neparametricheskikh kriteriev, Nauka, M., 1995 | MR

[7] Ya. Yu. Nikitin, E. V. Ponikarov, “Grubaya asimptotika veroyatnostei bolshikh uklonenii chernovskogo tipa funktsionalov Mizesa i $U$-statistik”, Trudy Sankt-Peterburgskogo matematicheskogo obschestva, 7, 1999, 23–47 | MR

[8] I. A. Ahmad, A. R. Mugdadi, “Testing normality using kernel methods”, J. of Nonparametric Stat., 15 (2003), 273–288 | DOI | MR | Zbl

[9] A. Azzalini, “A class of distributions which includes the normal ones”, Scand. J. Stat., 12 (1985), 171–178 | MR | Zbl

[10] R. R. Bahadur, Some limit theorems in statistics, SIAM, Philadelphia, 1971 | MR | Zbl

[11] W. Bryc, The normal distribution. Characterizations with applications, Lect. Notes Statistics, 100, Springer-Verlag, Berlin, 1995 | MR | Zbl

[12] F. De Helguero, “Sulla rappresentazione analitica delle statistiche abnormali”, Atti del IV Congresso Internaz. dei Matematici, Roma, 8 (1908), 288–289

[13] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Stat., 19 (1948), 293–325 | DOI | MR | Zbl

[14] P. L. Janssen, Generalized Empirical Distribution Functions with Statistical Applications, Limburgs Universitair Centrum, Diepenbeek, 1988

[15] A. V. Kakosyan, L. B. Klebanov, J. A. Melamed, Characterization of distributions by the method of intensively monotone operators, Lect. Notes Mathematics, 1088, Springer-Verlag, Berlin, 1984 | MR | Zbl

[16] A. M. Mathai, G. Pederzoli, Characterizations of the Normal Probability Law, Wiley, NY, 1977 | MR | Zbl

[17] P. Muliere, Ya. Nikitin, “Scale-invariant test of normality based on Polya's characterization”, Metron, 60:1–2 (2002), 21–33 | MR | Zbl

[18] G. Polya, “Herleitung des Gauss'schen Fehlergesetzes aus einer Funktionalsgleichung”, Math. Zeitschrift, 18 (1923), 96–108 | DOI | MR | Zbl

[19] C. R. Rao, Linear Statistical Inference and its Applications, Wiley, NY, 1965 | MR | Zbl

[20] O. Vasicek, “A test for normality based on sample entropy”, J. Roy. Stat. Soc. Ser. B, 38 (1976), 54–59 | MR | Zbl