@article{ZNSL_2005_328_a7,
author = {V. V. Litvinova and Ya. Yu. Nikitin},
title = {Two families of normality tests based on {Polya} characterization, and their efficiency},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--159},
year = {2005},
volume = {328},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/}
}
TY - JOUR AU - V. V. Litvinova AU - Ya. Yu. Nikitin TI - Two families of normality tests based on Polya characterization, and their efficiency JO - Zapiski Nauchnykh Seminarov POMI PY - 2005 SP - 147 EP - 159 VL - 328 UR - http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/ LA - ru ID - ZNSL_2005_328_a7 ER -
V. V. Litvinova; Ya. Yu. Nikitin. Two families of normality tests based on Polya characterization, and their efficiency. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 147-159. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a7/
[1] A. M. Kagan, Yu. V. Linnik, S. R. Rao, Kharakterizatsionnye zadachi matematicheskoi statistiki, Nauka, M., 1972 | MR
[2] V. S. Korolyuk, Yu. V. Borovskikh, Teoriya $U$-statistik, Naukova Dumka, Kiev, 1989 | MR
[3] Yu. V. Linnik, “Lineinye statistiki i normalnyi zakon raspredeleniya”, Dokl. AN SSSR, 83:3 (1952), 353–355 | MR | Zbl
[4] Yu. V. Linnik, “Lineinye formy i statisticheskie kriterii, I, II”, Ukr. matem. zh., 5:2–3 (1953), 207–243, 247–290 | MR
[5] V. V. Litvinova, Asimptoticheskie svoistva kriteriev simmetrii i soglasiya, osnovannykh na kharakterizatsiyakh, Kand. diss. SPbGU, 2004
[6] Ya. Yu. Nikitin, Asimptoticheskaya effektivnost neparametricheskikh kriteriev, Nauka, M., 1995 | MR
[7] Ya. Yu. Nikitin, E. V. Ponikarov, “Grubaya asimptotika veroyatnostei bolshikh uklonenii chernovskogo tipa funktsionalov Mizesa i $U$-statistik”, Trudy Sankt-Peterburgskogo matematicheskogo obschestva, 7, 1999, 23–47 | MR
[8] I. A. Ahmad, A. R. Mugdadi, “Testing normality using kernel methods”, J. of Nonparametric Stat., 15 (2003), 273–288 | DOI | MR | Zbl
[9] A. Azzalini, “A class of distributions which includes the normal ones”, Scand. J. Stat., 12 (1985), 171–178 | MR | Zbl
[10] R. R. Bahadur, Some limit theorems in statistics, SIAM, Philadelphia, 1971 | MR | Zbl
[11] W. Bryc, The normal distribution. Characterizations with applications, Lect. Notes Statistics, 100, Springer-Verlag, Berlin, 1995 | MR | Zbl
[12] F. De Helguero, “Sulla rappresentazione analitica delle statistiche abnormali”, Atti del IV Congresso Internaz. dei Matematici, Roma, 8 (1908), 288–289
[13] W. Hoeffding, “A class of statistics with asymptotically normal distribution”, Ann. Math. Stat., 19 (1948), 293–325 | DOI | MR | Zbl
[14] P. L. Janssen, Generalized Empirical Distribution Functions with Statistical Applications, Limburgs Universitair Centrum, Diepenbeek, 1988
[15] A. V. Kakosyan, L. B. Klebanov, J. A. Melamed, Characterization of distributions by the method of intensively monotone operators, Lect. Notes Mathematics, 1088, Springer-Verlag, Berlin, 1984 | MR | Zbl
[16] A. M. Mathai, G. Pederzoli, Characterizations of the Normal Probability Law, Wiley, NY, 1977 | MR | Zbl
[17] P. Muliere, Ya. Nikitin, “Scale-invariant test of normality based on Polya's characterization”, Metron, 60:1–2 (2002), 21–33 | MR | Zbl
[18] G. Polya, “Herleitung des Gauss'schen Fehlergesetzes aus einer Funktionalsgleichung”, Math. Zeitschrift, 18 (1923), 96–108 | DOI | MR | Zbl
[19] C. R. Rao, Linear Statistical Inference and its Applications, Wiley, NY, 1965 | MR | Zbl
[20] O. Vasicek, “A test for normality based on sample entropy”, J. Roy. Stat. Soc. Ser. B, 38 (1976), 54–59 | MR | Zbl