On estimation and detection of infinite-variable function
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 91-113
Voir la notice de l'article provenant de la source Math-Net.Ru
We observe an unknown infinite-variable function $f=f(t)$, $t=(t_1,\ldots,t_n,\ldots)\in[0,1]^\infty$, in the white Gaussian noise of a level $\varepsilon>0$. We suppose that, in each variable, there exist 1-periodical $\sigma$-smooth extensions of functions $f(t)$ on $\mathbb R^\infty$. Taking a quantity $\sigma>0$ and a positive sequence $\mathbf a=\{a_k\}$, we consider the set $\mathcal F_{\sigma,\mathbf a}$ that consists of functions $f$ such that $\sum_{k=1}^\infty a_k^2\|\partial^\sigma f/\partial t_k^{\sigma}\|_2^2\le 1$. We consider the cases $a_k=k^\alpha$ and $a_k=\exp(\lambda k)$, $\alpha>0$, $\lambda>0$. We want to estimate a function $f\in\mathcal F_{\sigma,\mathbf a}$ or to test the null hypothesis $H_0$: $f=0$ against alternatives $f\in\mathcal F_{\sigma,\mathbf a}(r_\varepsilon)$ where the set $\mathcal F_{\sigma,\mathbf a}(r)$ consists of functions of $f\in \mathcal F_{\sigma,\mathbf a}$ such that $\|f\|_2\ge r$.
In the estimation problem, we obtain the asymptotics (as $\varepsilon\to 0$) of the minimax quadratic risk. In the detection problem, we study the sharp asymptotics of minimax separation rates $r_\varepsilon^*$
that provide distiguishability in the problems.
@article{ZNSL_2005_328_a5,
author = {Yu. I. Ingster and I. A. Suslina},
title = {On estimation and detection of infinite-variable function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--113},
publisher = {mathdoc},
volume = {328},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a5/}
}
Yu. I. Ingster; I. A. Suslina. On estimation and detection of infinite-variable function. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 9, Tome 328 (2005), pp. 91-113. http://geodesic.mathdoc.fr/item/ZNSL_2005_328_a5/