On the decay rate of $(p,A)$-lacunary series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 135-149
Voir la notice de l'article provenant de la source Math-Net.Ru
A power series $\sum\limits^\infty_{k=0} a_k x^{n_k}$ with radius of convergence equal to 1 is said to be $(p,A)$-lacunary if $n_k\ge Ak^p$, $A>0$, $1$. It is proved that if a $(p,A)$-lacunary series $f$ satisfies the condition
$$
|f(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+\varepsilon(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|+1)\biggr)\underset{x\to1-0}{\longrightarrow}0,
$$
for $1$, where
$$
B=(p-1)\biggl(\frac\pi p\biggr)^{\frac p{p-1}}\cdot\frac1{A^{1/(p-1)}}\cdot\frac1{|\cos\frac{\pi p}2|^{1/(p-1)}},
$$
and $\varepsilon>0$, then $f\equiv0$.
We also construct a $(p,A)$-lacunary series $f_0$ such that
$$
|f_0(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+C_0(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|^2+1)\biggr)\underset{x\to1-0}{\longrightarrow}0.
$$
for a constant $C_0=C_0(p,A)>0$.
@article{ZNSL_2005_327_a8,
author = {F. L. Nazarov and N. A. Shirokov},
title = {On the decay rate of $(p,A)$-lacunary series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--149},
publisher = {mathdoc},
volume = {327},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a8/}
}
F. L. Nazarov; N. A. Shirokov. On the decay rate of $(p,A)$-lacunary series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 135-149. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a8/