. It is proved that if a $(p,A)$-lacunary series $f$ satisfies the condition $$ |f(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+\varepsilon(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|+1)\biggr)\underset{x\to1-0}{\longrightarrow}0, $$ for $1 , where $$ B=(p-1)\biggl(\frac\pi p\biggr)^{\frac p{p-1}}\cdot\frac1{A^{1/(p-1)}}\cdot\frac1{|\cos\frac{\pi p}2|^{1/(p-1)}}, $$ and $\varepsilon>0$, then $f\equiv0$. We also construct a $(p,A)$-lacunary series $f_0$ such that $$ |f_0(x)|\exp\biggl(B(1-x)^{-\frac1{p-1}}+C_0(1-x)^{-\frac1{p-1}}\bigg/(|\log(1-x)|^2+1)\biggr)\underset{x\to1-0}{\longrightarrow}0. $$ for a constant $C_0=C_0(p,A)>0$.
@article{ZNSL_2005_327_a8,
author = {F. L. Nazarov and N. A. Shirokov},
title = {On the decay rate of $(p,A)$-lacunary series},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {135--149},
year = {2005},
volume = {327},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a8/}
}
F. L. Nazarov; N. A. Shirokov. On the decay rate of $(p,A)$-lacunary series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 33, Tome 327 (2005), pp. 135-149. http://geodesic.mathdoc.fr/item/ZNSL_2005_327_a8/
[1] N. A. Shirokov, Analytic functions smooth up to the boundary, Lect. Notes Math., 1312, 1988 | MR | Zbl
[2] N. A. Shirokov, “Primer bystro ubyvayuschei $(p,A)$-lakunarnoi funktsii”, Zap. nauchn. semin. POMI, 270, 2000, 350–363 | MR | Zbl
[3] L. I. Hirschman, J. A. Jenkins, “On lacunary Dirichlet series”, Proc. Amer. Math. Soc, 1:4 (1950), 512–517 | DOI | MR | Zbl
[4] J. M. Anderson, “Bounded analytic functions with Hadamard gaps”, Mathematica, 23:2 (1976), 142–147 | MR