Pseudo-self-affine tilings in~$\mathbb R^d$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 198-213

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every pseudo-self-affine tiling in $\mathbb R^d$ is mutually locally derivable with a self-affine tiling. A characterization of pseudo-self-similar tilings in terms of derived Voronoï tessellations is a corollary. Previously, these results were obtained in the planar case, jointly with Priebe Frank. The new approach is based on the theory of graph-directed iterated function systems and substitution Delone sets developed by Lagarias and Wang.
@article{ZNSL_2005_326_a10,
     author = {B. Solomyak},
     title = {Pseudo-self-affine tilings in~$\mathbb R^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--213},
     publisher = {mathdoc},
     volume = {326},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/}
}
TY  - JOUR
AU  - B. Solomyak
TI  - Pseudo-self-affine tilings in~$\mathbb R^d$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 198
EP  - 213
VL  - 326
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/
LA  - en
ID  - ZNSL_2005_326_a10
ER  - 
%0 Journal Article
%A B. Solomyak
%T Pseudo-self-affine tilings in~$\mathbb R^d$
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 198-213
%V 326
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/
%G en
%F ZNSL_2005_326_a10
B. Solomyak. Pseudo-self-affine tilings in~$\mathbb R^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 198-213. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/