@article{ZNSL_2005_326_a10,
author = {B. Solomyak},
title = {Pseudo-self-affine tilings in~$\mathbb R^d$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {198--213},
year = {2005},
volume = {326},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/}
}
B. Solomyak. Pseudo-self-affine tilings in $\mathbb R^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 198-213. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/
[1] M. Baake, M. Schlottmann, “Geometric aspects of tilings and equivalence concepts”, Proc. ICQ5, World Scientific, Singapore, 1995, 15–21
[2] M. Baake, M. Schlottmann, P. D. Jarvis, “Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability”, J. Phys. A, 24 (1991), 4637–4654 | DOI | MR | Zbl
[3] C. Holton, C. Radin, L. Sadun, Conjugacies for tiling dynamical systems, arXiv: /math.DS/0307259 | MR
[4] R. Kenyon, A. Vershik, “Arithmetic construction of sofic partitions of hyperbolic toral automorphisms”, Ergodic Theory Dynam. Systems, 18:2 (1998), 357–372 | DOI | MR | Zbl
[5] J. C. Lagarias, Y. Wang, “Substitution Delone sets”, Discrete Comput. Geom., 29 (2003), 175–209 | MR | Zbl
[6] J.-Y. Lee, R. V. Moody, B. Solomyak, “Consequences of pure point diffraction spectra for multiset substitution systems”, Discrete Comput. Geom., 29 (2003), 525–560 | MR | Zbl
[7] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995 | MR
[8] K. Petersen, “Factor maps between tiling dynamical systems”, Forum Math., 11 (1999), 503–512 | DOI | MR | Zbl
[9] N. M. Priebe, Detecting hierarchy in tiling dynamical systems via derived Voronoï tesselations, Ph. D. Thesis, University of North Carolina at Chapel Hill, 1997
[10] N. M. Priebe, “Towards a characterization of self-similar tilings in terms of derived Voronoï tesselations”, Geom. Dedicata, 79 (2000), 239–265 | DOI | MR | Zbl
[11] N. M. Priebe, B. Solomyak, “Characterization of planar pseudo-self-similar tilings”, Discrete Comput. Geom., 26 (2001), 289–236 | MR
[12] C. Radin, L. Sadun, “Isomorphism of hierarchical structures”, Ergodic Theory Dynam. Systems, 21 (2001), 1239–1248 | DOI | MR | Zbl
[13] B. Rand, Equivalence of self-similar and pseudo-self-similar tiling spaces in $\mathrm{R}^2$, Preprint, 2004
[14] E. A. Robinson, Jr., “Symbolic dynamics and tilings of $\mathrm{R}^d$”, Symbolic dynamics and its applications, Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, 2004, 81–119 | MR | Zbl
[15] D. J. Rudolph, “Markov tilings of $\mathrm{R}^n$ and representations of $\mathrm{R}^n$ actions”, Measure and measurable dynamics (Rochester, NY, 1987), Amer. Math. Soc., Providence, RI, 1989, 271–290 | MR
[16] N. Sidorov, A. Vershik, “Bijective arithmetic codings of hyperbolic automorphisms of the $2$-torus, and binary quadratic forms”, J. Dynam. Control Systems, 4:3 (1998), 365–399 | DOI | MR | Zbl
[17] B. Solomyak, “Dynamics of Self-Similar Tilings”, Ergodic Theory Dynam. Systems, 17 (1997), 695–738 ; Corrections 19:6 (1999), 1685 | DOI | MR | Zbl | DOI | MR
[18] A. Vershik, “Arithmetic isomorphism of hyperbolic automorphisms of a torus and of sofic shifts”, Funct. Anal. Appl., 26:3 (1992), 170–173 | DOI | MR | Zbl