Pseudo-self-affine tilings in $\mathbb R^d$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 198-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proved that every pseudo-self-affine tiling in $\mathbb R^d$ is mutually locally derivable with a self-affine tiling. A characterization of pseudo-self-similar tilings in terms of derived Voronoï tessellations is a corollary. Previously, these results were obtained in the planar case, jointly with Priebe Frank. The new approach is based on the theory of graph-directed iterated function systems and substitution Delone sets developed by Lagarias and Wang.
@article{ZNSL_2005_326_a10,
     author = {B. Solomyak},
     title = {Pseudo-self-affine tilings in~$\mathbb R^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--213},
     year = {2005},
     volume = {326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/}
}
TY  - JOUR
AU  - B. Solomyak
TI  - Pseudo-self-affine tilings in $\mathbb R^d$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 198
EP  - 213
VL  - 326
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/
LA  - en
ID  - ZNSL_2005_326_a10
ER  - 
%0 Journal Article
%A B. Solomyak
%T Pseudo-self-affine tilings in $\mathbb R^d$
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 198-213
%V 326
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/
%G en
%F ZNSL_2005_326_a10
B. Solomyak. Pseudo-self-affine tilings in $\mathbb R^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XIII, Tome 326 (2005), pp. 198-213. http://geodesic.mathdoc.fr/item/ZNSL_2005_326_a10/

[1] M. Baake, M. Schlottmann, “Geometric aspects of tilings and equivalence concepts”, Proc. ICQ5, World Scientific, Singapore, 1995, 15–21

[2] M. Baake, M. Schlottmann, P. D. Jarvis, “Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability”, J. Phys. A, 24 (1991), 4637–4654 | DOI | MR | Zbl

[3] C. Holton, C. Radin, L. Sadun, Conjugacies for tiling dynamical systems, arXiv: /math.DS/0307259 | MR

[4] R. Kenyon, A. Vershik, “Arithmetic construction of sofic partitions of hyperbolic toral automorphisms”, Ergodic Theory Dynam. Systems, 18:2 (1998), 357–372 | DOI | MR | Zbl

[5] J. C. Lagarias, Y. Wang, “Substitution Delone sets”, Discrete Comput. Geom., 29 (2003), 175–209 | MR | Zbl

[6] J.-Y. Lee, R. V. Moody, B. Solomyak, “Consequences of pure point diffraction spectra for multiset substitution systems”, Discrete Comput. Geom., 29 (2003), 525–560 | MR | Zbl

[7] D. Lind, B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995 | MR

[8] K. Petersen, “Factor maps between tiling dynamical systems”, Forum Math., 11 (1999), 503–512 | DOI | MR | Zbl

[9] N. M. Priebe, Detecting hierarchy in tiling dynamical systems via derived Voronoï tesselations, Ph. D. Thesis, University of North Carolina at Chapel Hill, 1997

[10] N. M. Priebe, “Towards a characterization of self-similar tilings in terms of derived Voronoï tesselations”, Geom. Dedicata, 79 (2000), 239–265 | DOI | MR | Zbl

[11] N. M. Priebe, B. Solomyak, “Characterization of planar pseudo-self-similar tilings”, Discrete Comput. Geom., 26 (2001), 289–236 | MR

[12] C. Radin, L. Sadun, “Isomorphism of hierarchical structures”, Ergodic Theory Dynam. Systems, 21 (2001), 1239–1248 | DOI | MR | Zbl

[13] B. Rand, Equivalence of self-similar and pseudo-self-similar tiling spaces in $\mathrm{R}^2$, Preprint, 2004

[14] E. A. Robinson, Jr., “Symbolic dynamics and tilings of $\mathrm{R}^d$”, Symbolic dynamics and its applications, Proc. Sympos. Appl. Math., 60, Amer. Math. Soc., Providence, RI, 2004, 81–119 | MR | Zbl

[15] D. J. Rudolph, “Markov tilings of $\mathrm{R}^n$ and representations of $\mathrm{R}^n$ actions”, Measure and measurable dynamics (Rochester, NY, 1987), Amer. Math. Soc., Providence, RI, 1989, 271–290 | MR

[16] N. Sidorov, A. Vershik, “Bijective arithmetic codings of hyperbolic automorphisms of the $2$-torus, and binary quadratic forms”, J. Dynam. Control Systems, 4:3 (1998), 365–399 | DOI | MR | Zbl

[17] B. Solomyak, “Dynamics of Self-Similar Tilings”, Ergodic Theory Dynam. Systems, 17 (1997), 695–738 ; Corrections 19:6 (1999), 1685 | DOI | MR | Zbl | DOI | MR

[18] A. Vershik, “Arithmetic isomorphism of hyperbolic automorphisms of a torus and of sofic shifts”, Funct. Anal. Appl., 26:3 (1992), 170–173 | DOI | MR | Zbl