@article{ZNSL_2005_325_a7,
author = {S. V. Kerov},
title = {Coherent {Random} {Allocations,} and the {Ewens{\textendash}Pitman} {Formula}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--145},
year = {2005},
volume = {325},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a7/}
}
S. V. Kerov. Coherent Random Allocations, and the Ewens–Pitman Formula. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 127-145. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a7/
[1] A. M. Vershik, S. V. Kerov, “Locally Semisimple Algebras. Combinatorial theory and the $K_0$-Functor”, J. Sov. Math., 38 (1987), 1701–1733 | DOI | MR | Zbl
[2] S. V. Kerov, “Subordinators, and permutations acting with quasi-invariant measure”, Zap. Nauchn. Semin. POMI, 223, 1995, 181–218 | MR
[3] S. V. Kerov, Small cycles of big permutations, Preprint PDMI, 22, 1995 | MR
[4] S. V. Kerov, N. V. Tsilevich, “Stick breaking process generates virtual permutations with Ewens distribution”, Zap. Nauchn. Semin. POMI, 223, 1995, 162–180 | MR
[5] V. F. Kolchin, “A problem on allocations of particles into boxes, and the cycles of random permutations”, Probability Theory and Applications, 16 (1971), 67–82 | MR | Zbl
[6] V. F. Kolchin, B. A. Sevast'yanov, V. P. Chistyakov, Random Allocations, Wiley, New York, 1978 | MR
[7] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl
[8] W. J. Ewens, “The sampling theory of selectively neutral allels”, Theoret. Population Biol., 3 (1972), 87–112 | DOI | MR | Zbl
[9] W. J. Ewens, “Population genetics theory – the past and the future”, Mathematical and statistical developments of evolutionary theory, Proc. Semin. (Montreal/Can. 1987), NATO ASI Ser., Ser. C, 299, Kluwer, Dordrecht, 1990, 177–227 | MR
[10] P. R. Halmos, “Random alms”, Ann. of Math. Stat., 15 (1944), 182–189 | DOI | MR | Zbl
[11] S. Kerov, G. Olshanski, A. Vershik A., “Harmonic Analysis on the Infinite Symmetric Group”, C. Rend. Acad. Sci. Paris, 316 (1993), 773–778 | MR | Zbl
[12] S. V. Kerov, A. M. Vershik, “The Grothendieck Group of the Infinite Symmetric Group and Symmetric Functions with the Elements of the $K_0$-functor theory of $AF$-algebras”, Adv. Stud. Contemp. Math., 7, Gordon and Breach, 1990, 36–114 | MR
[13] J. F. C. Kingman, “The representation of partition structures”, J. London Math. Soc. (2), 18 (1978), 374–380 | DOI | MR | Zbl
[14] J. F. C. Kingman, “Random partitions in population genetics”, Proc. R. Soc. Lond. A, 361 (1978), 1–20 | DOI | MR | Zbl
[15] M. Perman, J. Pitman, M. Yor, “Size-biased sampling of Poisson point processes and excursions”, Probab. Theory Relat. Fields, 92 (1992), 21–39 | DOI | MR | Zbl
[16] J. Pitman, The Two-parameter Generalization of Ewens' Random Partition Structure, Preprint, Department of Statistics, University of California at Berkeley, No 345, 1992, 1–23
[17] J. Pitman, M. Yor, “Arcsine laws and interval partitions derived from a stable subordinator”, Proc. London Math. Soc. (3), 65 (1992), 326–356 | DOI | MR | Zbl
[18] J. Pitman, M. Yor, “The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator”, Ann. Probab., 25 (1997), 855–900 | DOI | MR | Zbl
[19] S. Tavaré, W. J. Ewens, “The Ewens Sampling Formula”, Multivariate Discrete Distributions, 1995, 1–20
[20] R. A. Arratia, A. D. Barbour, S. Tavaré, Logarithmic Combinatorial structures: A Probabilistic Approach, EMS Monographs in Mathematics, European Mathematical Society, Zurich, 2003 | MR | Zbl
[21] A. Gnedin, J. Pitman, “Exchangeable Gibbs partitions and Stirling triangles”, Zap. Nauchn. Semin. POMI, 325, 2005, 83–102 | MR | Zbl
[22] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[23] S. V. Kerov, A. Okounkov, G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Intern. Math. Res. Notices, 1998, 173–199 | DOI | MR | Zbl
[24] J. Pitman, “Exchangeable and partially exchangeable random partitions”, Probab. Theory Rel. Fields, 102 (1995), 145–158 | DOI | MR | Zbl
[25] J. Pitman, “Combinatorial stochastic processs”, Springer Lect. Notes Math. (to appear) | MR