Coherent Random Allocations, and the Ewens–Pitman Formula
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 127-145 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Assume that there is a random number $K$ of positive integer random variables $S_1,\dots,S_K$ which are conditionally independent, given $K$, and all have identical distributions. A random integer partition $N=S_1+S_2+\ldots+S_K$ arises, and we denote by $P_N$ the conditional distribution of this partition, for a fixed value of $N$. We prove that the distributions $\{P_N\}_{N=1}^\infty$ form a partition structure in the sense of Kingman if, and only if, they are governed by the Ewens–Pitman Formula. The latter generalizes the celebrated Ewens Sampling Formula which has numerous applications in pure and applied mathematics. The distributions of random variables $K$ and $S_j$ belong to a family of integer distributions with two real parameters, which we call quasi-binomial. Hence, every Ewens–Pitman distribution arises as a result of a two-stage random procedure based on this simple class of integer distributions.
@article{ZNSL_2005_325_a7,
     author = {S. V. Kerov},
     title = {Coherent {Random} {Allocations,} and the {Ewens{\textendash}Pitman} {Formula}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--145},
     year = {2005},
     volume = {325},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a7/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - Coherent Random Allocations, and the Ewens–Pitman Formula
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 127
EP  - 145
VL  - 325
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a7/
LA  - en
ID  - ZNSL_2005_325_a7
ER  - 
%0 Journal Article
%A S. V. Kerov
%T Coherent Random Allocations, and the Ewens–Pitman Formula
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 127-145
%V 325
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a7/
%G en
%F ZNSL_2005_325_a7
S. V. Kerov. Coherent Random Allocations, and the Ewens–Pitman Formula. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 127-145. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a7/

[1] A. M. Vershik, S. V. Kerov, “Locally Semisimple Algebras. Combinatorial theory and the $K_0$-Functor”, J. Sov. Math., 38 (1987), 1701–1733 | DOI | MR | Zbl

[2] S. V. Kerov, “Subordinators, and permutations acting with quasi-invariant measure”, Zap. Nauchn. Semin. POMI, 223, 1995, 181–218 | MR

[3] S. V. Kerov, Small cycles of big permutations, Preprint PDMI, 22, 1995 | MR

[4] S. V. Kerov, N. V. Tsilevich, “Stick breaking process generates virtual permutations with Ewens distribution”, Zap. Nauchn. Semin. POMI, 223, 1995, 162–180 | MR

[5] V. F. Kolchin, “A problem on allocations of particles into boxes, and the cycles of random permutations”, Probability Theory and Applications, 16 (1971), 67–82 | MR | Zbl

[6] V. F. Kolchin, B. A. Sevast'yanov, V. P. Chistyakov, Random Allocations, Wiley, New York, 1978 | MR

[7] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1995 | MR | Zbl

[8] W. J. Ewens, “The sampling theory of selectively neutral allels”, Theoret. Population Biol., 3 (1972), 87–112 | DOI | MR | Zbl

[9] W. J. Ewens, “Population genetics theory – the past and the future”, Mathematical and statistical developments of evolutionary theory, Proc. Semin. (Montreal/Can. 1987), NATO ASI Ser., Ser. C, 299, Kluwer, Dordrecht, 1990, 177–227 | MR

[10] P. R. Halmos, “Random alms”, Ann. of Math. Stat., 15 (1944), 182–189 | DOI | MR | Zbl

[11] S. Kerov, G. Olshanski, A. Vershik A., “Harmonic Analysis on the Infinite Symmetric Group”, C. Rend. Acad. Sci. Paris, 316 (1993), 773–778 | MR | Zbl

[12] S. V. Kerov, A. M. Vershik, “The Grothendieck Group of the Infinite Symmetric Group and Symmetric Functions with the Elements of the $K_0$-functor theory of $AF$-algebras”, Adv. Stud. Contemp. Math., 7, Gordon and Breach, 1990, 36–114 | MR

[13] J. F. C. Kingman, “The representation of partition structures”, J. London Math. Soc. (2), 18 (1978), 374–380 | DOI | MR | Zbl

[14] J. F. C. Kingman, “Random partitions in population genetics”, Proc. R. Soc. Lond. A, 361 (1978), 1–20 | DOI | MR | Zbl

[15] M. Perman, J. Pitman, M. Yor, “Size-biased sampling of Poisson point processes and excursions”, Probab. Theory Relat. Fields, 92 (1992), 21–39 | DOI | MR | Zbl

[16] J. Pitman, The Two-parameter Generalization of Ewens' Random Partition Structure, Preprint, Department of Statistics, University of California at Berkeley, No 345, 1992, 1–23

[17] J. Pitman, M. Yor, “Arcsine laws and interval partitions derived from a stable subordinator”, Proc. London Math. Soc. (3), 65 (1992), 326–356 | DOI | MR | Zbl

[18] J. Pitman, M. Yor, “The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator”, Ann. Probab., 25 (1997), 855–900 | DOI | MR | Zbl

[19] S. Tavaré, W. J. Ewens, “The Ewens Sampling Formula”, Multivariate Discrete Distributions, 1995, 1–20

[20] R. A. Arratia, A. D. Barbour, S. Tavaré, Logarithmic Combinatorial structures: A Probabilistic Approach, EMS Monographs in Mathematics, European Mathematical Society, Zurich, 2003 | MR | Zbl

[21] A. Gnedin, J. Pitman, “Exchangeable Gibbs partitions and Stirling triangles”, Zap. Nauchn. Semin. POMI, 325, 2005, 83–102 | MR | Zbl

[22] S. V. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[23] S. V. Kerov, A. Okounkov, G. Olshanski, “The boundary of Young graph with Jack edge multiplicities”, Intern. Math. Res. Notices, 1998, 173–199 | DOI | MR | Zbl

[24] J. Pitman, “Exchangeable and partially exchangeable random partitions”, Probab. Theory Rel. Fields, 102 (1995), 145–158 | DOI | MR | Zbl

[25] J. Pitman, “Combinatorial stochastic processs”, Springer Lect. Notes Math. (to appear) | MR