@article{ZNSL_2005_325_a6,
author = {F. S. Duzhin},
title = {Lower bounds on the number of closed trajectories of generalized billiards},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {113--126},
year = {2005},
volume = {325},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a6/}
}
F. S. Duzhin. Lower bounds on the number of closed trajectories of generalized billiards. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part XII, Tome 325 (2005), pp. 113-126. http://geodesic.mathdoc.fr/item/ZNSL_2005_325_a6/
[1] G. Birkhoff, Dynamical Systems, New York, 1927; Dzh. Birkgof, Dinamicheskie sistemy, Moskva, 1942
[2] M. Morse, S. S. Cairns, Critical Points Theory in Global Analysis and Differential Topology, Academic Press, New York, 1969 | MR | Zbl
[3] F. Takens, J. White, “Morse theory of double normals of immersions”, Indiana Univ. Math. J., 21:1 (1971), 11–17 | DOI | MR | Zbl
[4] P. Pushkar, “Diameters of immersed manifolds and of wave fronts”, C. R. Acad. Sci. Paris, 326:2 (1998), 201–205 | MR | Zbl
[5] M. Farber, S. Tabachnikov, “Topology of cyclic configuration spaces and periodic trajectories of multi-dimensional billiards”, Topology, 41:3 (2002), 553–589 | DOI | MR | Zbl
[6] M. Farber, S. Tabachnikov, “Periodic trajectories in 3-dimensional convex billiards”, Manuscripta Math., 108:4 (2002), 431–437 | DOI | MR | Zbl
[7] F. S. Duzhin, “Lower bounds for the number of closed billiard trajectories of period $2$ and $3$ in manifolds embedded in Euclidean space”, IMRN, 2003, no. 8, 425–449 | DOI | MR | Zbl