Embedding formula for an electromagnetic diffraction problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 247-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Embedding formulae is a powerful tool enabling one to reduce the dimension of the space of variables for a diffraction problem. Let the scatterer be finite, planar and perfectly conducting. The idea of the method is to substitute the initial problem of diffraction of a plane wave by finding an edge Green's function, i.e., to solve a problem with a sourve located near the edge of a scatterer. Embedding formula is an integral relation connecting the solution of the initial plane wave incidence problem with the edge Green's function. Earlier, the embedding formulae have been derived for acoustic and elasticity problems. Here we derive en embedding formula for an electromagnetic problem.
@article{ZNSL_2005_324_a14,
     author = {A. V. Shanin},
     title = {Embedding formula for an electromagnetic diffraction problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--261},
     year = {2005},
     volume = {324},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/}
}
TY  - JOUR
AU  - A. V. Shanin
TI  - Embedding formula for an electromagnetic diffraction problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 247
EP  - 261
VL  - 324
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/
LA  - ru
ID  - ZNSL_2005_324_a14
ER  - 
%0 Journal Article
%A A. V. Shanin
%T Embedding formula for an electromagnetic diffraction problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 247-261
%V 324
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/
%G ru
%F ZNSL_2005_324_a14
A. V. Shanin. Embedding formula for an electromagnetic diffraction problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 247-261. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/

[1] M. H. Williams, “Diffraction by a finite strip”, Quart. Jl. Mech. Appl. Math., 35 (1982), 103–124 | DOI | MR | Zbl

[2] P. A. Martin, G. R. Wickham, “Diffraction of elastic waves by a penny-shaped crack: analytical and numerical results”, Proc. R. Soc. Lond. A, 390 (1983), 91–129 | DOI | MR | Zbl

[3] N. R. T. Biggs, D. Porter, D. S. G. Stirling, “Wave diffraction through a perforated breakwater”, Quart. Jl. Mech. Appl. Math., 53 (2000), 375–391 | DOI | MR | Zbl

[4] N. R. T. Biggs, D. Porter, “Wave diffraction through a perforated barrier of non-zero thickness”, Quart. Jl. Mech. Appl. Math., 54 (2001), 523–547 | DOI | MR | Zbl

[5] N. R. T. Biggs, D. Porter, “Wave scattering by a perforated duct”, Quart. Jl. Mech. Appl. Math., 55 (2002), 249–272 | DOI | MR | Zbl

[6] A. V. Shanin, R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations”, Euro. Jl. Appl. Math., 13 (2002), 617–639 | DOI | MR | Zbl

[7] R. V. Craster, A. V. Shanin, E. M. Doubravsky, “Embedding formulae in diffraction theory”, Proc. Roy. Soc. Lond. A, 459 (2003), 2475–2496 | DOI | MR | Zbl

[8] R. V. Craster, V. H. Hoang, “Application of Fuchsian differential equations to free boundary problems”, Proc. Roy. Soc. Lond. A, 453 (1998), 1241–1252 | MR

[9] A. V. Shanin, “Diffraction of a plane wave by two ideal strips”, Quart. Jl. Mech. Appl. Math., 56 (2003), 187–215 | DOI | MR | Zbl

[10] A. V. Shanin, “A generalization of the separation of variables method for some 2D diffraction problems”, Wave Motion, 37 (2003), 241–256 | DOI | MR | Zbl

[11] A. V. Shanin, “Three theorems concerning diffraction by a strip or a slit”, Quart. Jl. Mech. Appl. Math., 54 (2001), 107–137 | DOI | MR | Zbl