Embedding formula for an electromagnetic diffraction problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 247-261

Voir la notice de l'article provenant de la source Math-Net.Ru

Embedding formulae is a powerful tool enabling one to reduce the dimension of the space of variables for a diffraction problem. Let the scatterer be finite, planar and perfectly conducting. The idea of the method is to substitute the initial problem of diffraction of a plane wave by finding an edge Green's function, i.e., to solve a problem with a sourve located near the edge of a scatterer. Embedding formula is an integral relation connecting the solution of the initial plane wave incidence problem with the edge Green's function. Earlier, the embedding formulae have been derived for acoustic and elasticity problems. Here we derive en embedding formula for an electromagnetic problem.
@article{ZNSL_2005_324_a14,
     author = {A. V. Shanin},
     title = {Embedding formula for an electromagnetic diffraction problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {247--261},
     publisher = {mathdoc},
     volume = {324},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/}
}
TY  - JOUR
AU  - A. V. Shanin
TI  - Embedding formula for an electromagnetic diffraction problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 247
EP  - 261
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/
LA  - ru
ID  - ZNSL_2005_324_a14
ER  - 
%0 Journal Article
%A A. V. Shanin
%T Embedding formula for an electromagnetic diffraction problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 247-261
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/
%G ru
%F ZNSL_2005_324_a14
A. V. Shanin. Embedding formula for an electromagnetic diffraction problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 34, Tome 324 (2005), pp. 247-261. http://geodesic.mathdoc.fr/item/ZNSL_2005_324_a14/