Rauzy tilings and bounded remainder sets on the torus
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 83-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For the two dimensional torus $\mathbb{T}^2$ we construct the Rauzy tilings $d^0\supset d^1\supset\ldots\supset d^m\supset\ldots$, where each tiling $d^{m+1}$ turns out by inflation of $d^{m}$. The following results are proved: 1) Any tiling $d^{m}$ is invariant with respect to the shift $S(x)=x+\begin{pmatrix} \zeta \\ \zeta ^2\end{pmatrix}\mod\mathbb{Z}^2$, here $\zeta^{-1}> 1$ is a Pisot number satisfying the equation $x^3-x^2-x-1=0$. 2) The induced map $S^{(m)}=S|_{B^m d}$ is an exchange transformation of $B^m d\subset\mathbb{T}^2$, where $d=d^0$ and $B=\begin{pmatrix} - \zeta & - \zeta \\ 1-\zeta ^2 & \zeta^2\end{pmatrix}$. 3) The map $S^{(m)}$ is a shift of the torus $B^m d\simeq\mathbb{T}^2$ and $S^{(m)}$ is isomorphic to the initial shift $S$. It means that $d^m$ are infinite differentiable tilings. Let $Z_N(X)$ be equal to the number of points in the orbit $S^1(0), S^2(0)$, $\ldots,S^N(0)$ visited the domain $B^m d$. Then the remainder $r_N(B^md)=Z_N(B^m d)-N\zeta^m$ satisfies $-1.7 for all $m$.
@article{ZNSL_2005_322_a6,
     author = {V. G. Zhuravlev},
     title = {Rauzy tilings and bounded remainder sets on the torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--106},
     year = {2005},
     volume = {322},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a6/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Rauzy tilings and bounded remainder sets on the torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2005
SP  - 83
EP  - 106
VL  - 322
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a6/
LA  - ru
ID  - ZNSL_2005_322_a6
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Rauzy tilings and bounded remainder sets on the torus
%J Zapiski Nauchnykh Seminarov POMI
%D 2005
%P 83-106
%V 322
%U http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a6/
%G ru
%F ZNSL_2005_322_a6
V. G. Zhuravlev. Rauzy tilings and bounded remainder sets on the torus. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 83-106. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a6/

[1] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl

[2] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Izv. RAN, ser. matem., 2005 (to appear)

[3] S. Ferenczi, “Bounded remainder sets”, Acta Arithmetica, 61 (1992), 319–326 | MR | Zbl

[4] S. Akiyma, “On the boundary of self affine tilings generated by Pisot numbers”, J. Math. Soc. Japan, 54 (2002), 283–308 | DOI | MR

[5] A. Messaoudi, “Properiétés arithmétiques et dynamiques du fractal de Rauzy”, J. Théorie Nombers de Bordeaux, 10 (1998), 135–162 | MR | Zbl

[6] S. Ito, M. Kimura, “On Rauzy fractal”, Japan J. Indust. Appl. Math., 8 (1991), 461–486 | DOI | MR | Zbl

[7] S. Ito, M. Ohtsuki, “Modified Jacobi–Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms”, Tokyo J. Math., 16:2 (1993), 441–472 | DOI | MR | Zbl

[8] A. V. Shutov, “O raspredelenii drobnykh dolei”, Chebyshevskii sbornik, 5:3 (2004), 111–121 | MR

[9] E. Hecke, “Eber analytische Funktionen und die Verteilung von Zahlen mod. eins”, Math. Sem. Hamburg. Univ., 1 (1921), 54–76 | DOI

[10] H. Kesten, “On a cojecture of Erdös and Szüsz related to uniform distribution $mod\;1$”, Acta Arith., 14 (1973), 26–38 | MR