Rauzy tilings and bounded remainder sets on the torus
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 83-106
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For the two dimensional torus $\mathbb{T}^2$ we construct the Rauzy tilings $d^0\supset d^1\supset\ldots\supset d^m\supset\ldots$, where each tiling  $d^{m+1}$ turns out by inflation of $d^{m}$. The following results are proved:
1) Any tiling $d^{m}$ is invariant with respect to the shift $S(x)=x+\begin{pmatrix}
\zeta \\ \zeta ^2\end{pmatrix}\mod\mathbb{Z}^2$, here $\zeta^{-1}> 1$ is a Pisot number satisfying the equation $x^3-x^2-x-1=0$.
2) The induced map $S^{(m)}=S|_{B^m d}$ is an exchange transformation of $B^m d\subset\mathbb{T}^2$, where  $d=d^0$ and $B=\begin{pmatrix}
 - \zeta  - \zeta \\ 1-\zeta ^2  \zeta^2\end{pmatrix}$.
3) The map $S^{(m)}$ is a shift of the torus  $B^m d\simeq\mathbb{T}^2$ and $S^{(m)}$ is isomorphic to the initial shift $S$. It means that $d^m$ are infinite differentiable tilings.
Let $Z_N(X)$ be equal to the number of points in the orbit
$S^1(0), S^2(0)$, $\ldots,S^N(0)$ 
visited the domain  $B^m d$. Then the remainder  $r_N(B^md)=Z_N(B^m d)-N\zeta^m$ satisfies $-1.7$ for all $m$.
			
            
            
            
          
        
      @article{ZNSL_2005_322_a6,
     author = {V. G. Zhuravlev},
     title = {Rauzy tilings and bounded remainder sets on the torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {83--106},
     publisher = {mathdoc},
     volume = {322},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a6/}
}
                      
                      
                    V. G. Zhuravlev. Rauzy tilings and bounded remainder sets on the torus. Zapiski Nauchnykh Seminarov POMI, Proceedings on number theory, Tome 322 (2005), pp. 83-106. http://geodesic.mathdoc.fr/item/ZNSL_2005_322_a6/