On classical $r$-matrices with parabolic carrier
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 122-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Using the graphic presentation of the dual Lie algebra $\frak{g}^{\#}(r)$ for simple algebra $\frak{g}$ it is possible to demonstrate that there always exist solutions $r_{ech}$ of the classical Yang–Baxter equation with parabolic carrier. To obtain $r_{ech}$ in the explicit form we find the dual coordinates in which the adjoint action of the carrier $\frak{g}_c$ becomes reducible. This allows to find the structure of the Jordanian $r$-matrices $r_{J}$ that are the candidates for enlarging the initial full chain $r_{fch}$ and realize the desired solution $r_{ech}$ in the factorized form $r_{ech}\approx r_{fch}+r_{J}$. We obtain the unique transformation: the canonical chain is to be substituted by a special kind of peripheric $r$-matrices: $r_{fch}\longrightarrow r_{rfch}$. To illustrate the method the case of $\frak{g}=sl(11)$ is considered in full details.
@article{ZNSL_2004_317_a7,
     author = {V. D. Lyakhovsky},
     title = {On classical $r$-matrices with parabolic carrier},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--141},
     year = {2004},
     volume = {317},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a7/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - On classical $r$-matrices with parabolic carrier
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 122
EP  - 141
VL  - 317
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a7/
LA  - ru
ID  - ZNSL_2004_317_a7
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T On classical $r$-matrices with parabolic carrier
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 122-141
%V 317
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a7/
%G ru
%F ZNSL_2004_317_a7
V. D. Lyakhovsky. On classical $r$-matrices with parabolic carrier. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 18, Tome 317 (2004), pp. 122-141. http://geodesic.mathdoc.fr/item/ZNSL_2004_317_a7/

[1] V. G. Drinfeld, Doklady AN SSSR, 273 (1983), 531 | MR

[2] A. N. Kirillov, N. Yu. Reshetikhin, Commun. Math. Phys., 134 (1990), 421–431 | DOI | MR | Zbl

[3] P. Etingof, O. Schiffman, T. Schedler, JAMS, 134 (2000), 595–609 | MR

[4] A. Alekseev, A. Lachowska, Invariant ast-product on coadjoint orbits and the Shapovalov pairing, arXiv: /math.QA/0308100

[5] A. Elashvili, “Frobeniusovy algebry Li”, Funktsionalnyi analiz i ego prilozheniya, 16:4 (1982), 94–95 | MR | Zbl

[6] P. P. Kulish, V. D. Lyakhovsky, M. A. del Olmo, J. Phys. A: Math. Gen., 32 (1999), 8671 ; arXiv: /math.QA/9908061 | DOI | MR | Zbl

[7] D. N. Ananikyan, P. P. Kulish, V. D. Lyakhovskii, Algebra i analiz, 14:3 (2002), 27–54 | MR | Zbl

[8] V. D. Lyakhovsky, Twist deformations in dual coordinates, arXiv: /math.QA/0312185

[9] L. C. Kwek, V. D. Lyakhovsky, Czech. Journ. Phys., 51 (2001), 1374–1379 | DOI | MR | Zbl

[10] V. D. Lyakhovsky, M. E. Samsonov, J. Algebra its Appl., 1 (2002), 413–424 | DOI | MR | Zbl

[11] M. Gerstenhaber, A. Giaquinto, Lett. Math. Phys., 40:4 (1997), 337–353 | DOI | MR | Zbl