On a~semigroup of Marcinkiewicz modulars with involution
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 121-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The set $\mathbf{M}$ of all concave Marcinkiewicz modulars on $[0,1]$ is a semigroup with respect to the usual composition of functions. It is established that some properties of modulars (which are of importance in interpolation and in general Banach space theory) distinguish subsets of $\mathbf{M}$ that form ideals of the semigroup. These ideals turn out to be in a natural duality relation, which is also studied.
@article{ZNSL_2004_315_a8,
     author = {A. A. Mekler},
     title = {On a~semigroup of {Marcinkiewicz} modulars with involution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--131},
     publisher = {mathdoc},
     volume = {315},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/}
}
TY  - JOUR
AU  - A. A. Mekler
TI  - On a~semigroup of Marcinkiewicz modulars with involution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 121
EP  - 131
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/
LA  - ru
ID  - ZNSL_2004_315_a8
ER  - 
%0 Journal Article
%A A. A. Mekler
%T On a~semigroup of Marcinkiewicz modulars with involution
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 121-131
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/
%G ru
%F ZNSL_2004_315_a8
A. A. Mekler. On a~semigroup of Marcinkiewicz modulars with involution. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 121-131. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/