On a semigroup of Marcinkiewicz modulars with involution
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 121-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The set $\mathbf{M}$ of all concave Marcinkiewicz modulars on $[0,1]$ is a semigroup with respect to the usual composition of functions. It is established that some properties of modulars (which are of importance in interpolation and in general Banach space theory) distinguish subsets of $\mathbf{M}$ that form ideals of the semigroup. These ideals turn out to be in a natural duality relation, which is also studied.
@article{ZNSL_2004_315_a8,
     author = {A. A. Mekler},
     title = {On a~semigroup of {Marcinkiewicz} modulars with involution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--131},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/}
}
TY  - JOUR
AU  - A. A. Mekler
TI  - On a semigroup of Marcinkiewicz modulars with involution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 121
EP  - 131
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/
LA  - ru
ID  - ZNSL_2004_315_a8
ER  - 
%0 Journal Article
%A A. A. Mekler
%T On a semigroup of Marcinkiewicz modulars with involution
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 121-131
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/
%G ru
%F ZNSL_2004_315_a8
A. A. Mekler. On a semigroup of Marcinkiewicz modulars with involution. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 121-131. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a8/

[1] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[2] G. Ya. Lozanovskii, “O predstavlenii lineinykh funktsionalov v prostranstvakh Martsinkevicha”, Izvestiya VUZov, Matematika, 1978, no. 1, 43–53 | MR | Zbl

[3] Yu. A. Abramovich, “O polu-$M$-prostranstvakh de Ionga i ikh primenenii k prostranstvam Martsinkevicha”, Mezhvuz. sbornik nauchn. trudov, Funkts. analiz, 13, Ulyanovsk, 1979, 3–10 | MR | Zbl

[4] E. V. Abakumov, A. A. Mekler, “A concave regularly varying leader for equiconcave functions”, J. Math. Anal. Appl., 187 (1994), 943–951 | DOI | MR | Zbl

[5] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular Variations, Cambridge University Press, Cambridge, 1987 | MR | Zbl

[6] A. P. Calderon, “Spaces between $L_1$ and $L_{\infty}$, and the theorem of Marcinkiewicz”, Studia Math., 26 (1966), 273–295 | MR

[7] G. Ya. Lozanovskii, “O banakhovykh strukturakh Kalderona”, Dokl. AN SSSR, 172:5 (1967), 1018–1020 | MR | Zbl

[8] P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2 (1998), 47–75 | DOI | MR | Zbl