Estimates of parameters of conformal mappings related to a periodic Jacobi matrix
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 102-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the conformal mappings of the band without some vertical symmetric slits into the plane without horizontal slits (which lie on the real axis). Sharp two-sided estimates involving the lengths of slits and other parameters are obtained. In terms of the spectral theory of Jacobi matrices, we obtain sharp estimates involving isospectral parameters and the norm of potentials.
@article{ZNSL_2004_315_a7,
     author = {A. Kutsenko},
     title = {Estimates of parameters of conformal mappings related to a~periodic {Jacobi} matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--120},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a7/}
}
TY  - JOUR
AU  - A. Kutsenko
TI  - Estimates of parameters of conformal mappings related to a periodic Jacobi matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 102
EP  - 120
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a7/
LA  - ru
ID  - ZNSL_2004_315_a7
ER  - 
%0 Journal Article
%A A. Kutsenko
%T Estimates of parameters of conformal mappings related to a periodic Jacobi matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 102-120
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a7/
%G ru
%F ZNSL_2004_315_a7
A. Kutsenko. Estimates of parameters of conformal mappings related to a periodic Jacobi matrix. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 102-120. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a7/

[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[2] P. van Moerbeke, “The spectrum of Jacobi matrices”, Invent. Math., 37:1 (1976), 45–81 | DOI | MR | Zbl

[3] E. Korotyaev, A. Kutsenko, Inverse problem for the periodic Jacoby matrices, Preprint, 2004

[4] Y. Last, “On the measure of gaps and spectra for discrete $1$D Schrodinger operators”, Comm. Math. Phys., 149:2 (1992), 347–360 | DOI | MR | Zbl

[5] P. Kargaev, E. Korotyaev, Inverse problems generated by conformal mappings on complex plane with parallel slits, Sfb 288 Preprint No 458

[6] P. Kargaev, E. Korotyaev, “Inverse Problem for the Hill Operator, the Direct Approach”, Invent. Math., 129:3 (1997), 567–593 | DOI | MR | Zbl

[7] E. Korotyaev, I. Krasovsky, “Spectral estimates for periodic Jacobi matrices”, Comm. Math. Phys., 234:3 (2003), 517–532 | DOI | MR | Zbl

[8] L. Perkolab, “An inverse problem for a periodic Jacobi matrix”, Teor. Funktsii Funktsional. Anal. i Prilozhen, 42 (1984), 107–121 | MR | Zbl

[9] P. Deift, B. Simon, “Almost periodic Shrödinger operators. III: The absolutely continuous spectrum in one dimension”, Commun. Math. Phys., 90 (1983), 389–411 | DOI | MR | Zbl