Inverse problem for the discrete periodic Schrödinger operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the isospectral sets for the discrete 1D Schrödinger operator on $\mathbb Z$ with a N+1 periodic potential. We show that for small odd potentials the isospectral set consists of $2^{(N+1)/2}$ elements, while for the large potentials the isospectral set consists of $(N+1)!$ elements. Moreover, the asymptotics of the end of the spectrum of the Schrödinger operator for small (and large) potentials are determined.
@article{ZNSL_2004_315_a6,
author = {E. Korotyaev and A. Kutsenko},
title = {Inverse problem for the discrete periodic {Schr\"odinger} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--101},
year = {2004},
volume = {315},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/}
}
E. Korotyaev; A. Kutsenko. Inverse problem for the discrete periodic Schrödinger operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/
[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[2] P. van Moerbeke, “The spectrum of Jacobi matrices”, Invent. Math., 37:1 (1976), 45–81 | DOI | MR | Zbl
[3] Y. Last, “On the measure of gaps and spectra for discrete $1$D Schrodinger operators”, Comm. Math. Phys., 149:2 (1992), 347–360 | DOI | MR | Zbl
[4] E. Korotyaev, I. Krasovsky, “Spectral estimates for periodic Jacobi matrices”, Comm. Math. Phys., 234:3 (2003), 517–532 | DOI | MR | Zbl
[5] L. Perkolab, “An inverse problem for a periodic Jacobi matrix”, Teor. Funk. Anal. Prilozh., 42 (1984), 107–121 | MR | Zbl