Inverse problem for the discrete periodic Schr\"odinger operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the isospectral sets for the discrete 1D Schrödinger operator on $\mathbb Z$ with a N+1 periodic potential. We show that for small odd potentials the isospectral set consists of $2^{(N+1)/2}$ elements, while for the large potentials the isospectral set consists of $(N+1)!$ elements. Moreover, the asymptotics of the end of the spectrum of the Schrödinger operator for small (and large) potentials are determined.
@article{ZNSL_2004_315_a6,
author = {E. Korotyaev and A. Kutsenko},
title = {Inverse problem for the discrete periodic {Schr\"odinger} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {96--101},
publisher = {mathdoc},
volume = {315},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/}
}
E. Korotyaev; A. Kutsenko. Inverse problem for the discrete periodic Schr\"odinger operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/