Inverse problem for the discrete periodic Schrödinger operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study the isospectral sets for the discrete 1D Schrödinger operator on $\mathbb Z$ with a N+1 periodic potential. We show that for small odd potentials the isospectral set consists of $2^{(N+1)/2}$ elements, while for the large potentials the isospectral set consists of $(N+1)!$ elements. Moreover, the asymptotics of the end of the spectrum of the Schrödinger operator for small (and large) potentials are determined.
@article{ZNSL_2004_315_a6,
     author = {E. Korotyaev and A. Kutsenko},
     title = {Inverse problem for the discrete periodic {Schr\"odinger} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--101},
     year = {2004},
     volume = {315},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/}
}
TY  - JOUR
AU  - E. Korotyaev
AU  - A. Kutsenko
TI  - Inverse problem for the discrete periodic Schrödinger operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 96
EP  - 101
VL  - 315
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/
LA  - ru
ID  - ZNSL_2004_315_a6
ER  - 
%0 Journal Article
%A E. Korotyaev
%A A. Kutsenko
%T Inverse problem for the discrete periodic Schrödinger operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 96-101
%V 315
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/
%G ru
%F ZNSL_2004_315_a6
E. Korotyaev; A. Kutsenko. Inverse problem for the discrete periodic Schrödinger operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/

[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[2] P. van Moerbeke, “The spectrum of Jacobi matrices”, Invent. Math., 37:1 (1976), 45–81 | DOI | MR | Zbl

[3] Y. Last, “On the measure of gaps and spectra for discrete $1$D Schrodinger operators”, Comm. Math. Phys., 149:2 (1992), 347–360 | DOI | MR | Zbl

[4] E. Korotyaev, I. Krasovsky, “Spectral estimates for periodic Jacobi matrices”, Comm. Math. Phys., 234:3 (2003), 517–532 | DOI | MR | Zbl

[5] L. Perkolab, “An inverse problem for a periodic Jacobi matrix”, Teor. Funk. Anal. Prilozh., 42 (1984), 107–121 | MR | Zbl