Inverse problem for the discrete periodic Schr\"odinger operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the isospectral sets for the discrete 1D Schrödinger operator on $\mathbb Z$ with a N+1 periodic potential. We show that for small odd potentials the isospectral set consists of $2^{(N+1)/2}$ elements, while for the large potentials the isospectral set consists of $(N+1)!$ elements. Moreover, the asymptotics of the end of the spectrum of the Schrödinger operator for small (and large) potentials are determined.
@article{ZNSL_2004_315_a6,
     author = {E. Korotyaev and A. Kutsenko},
     title = {Inverse problem for the discrete periodic {Schr\"odinger} operator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {96--101},
     publisher = {mathdoc},
     volume = {315},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/}
}
TY  - JOUR
AU  - E. Korotyaev
AU  - A. Kutsenko
TI  - Inverse problem for the discrete periodic Schr\"odinger operator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 96
EP  - 101
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/
LA  - ru
ID  - ZNSL_2004_315_a6
ER  - 
%0 Journal Article
%A E. Korotyaev
%A A. Kutsenko
%T Inverse problem for the discrete periodic Schr\"odinger operator
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 96-101
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/
%G ru
%F ZNSL_2004_315_a6
E. Korotyaev; A. Kutsenko. Inverse problem for the discrete periodic Schr\"odinger operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 32, Tome 315 (2004), pp. 96-101. http://geodesic.mathdoc.fr/item/ZNSL_2004_315_a6/