Aggregation in one-dimensional gas model with stable initial data
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 161-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One-dimensional stochastic model of gravitationally interacting adhesive particles with distribution of initial velocities from the domain of normal attraction of stable law is considered. It is shown that a nonrandom critical time exists when initial velocities are small enough. Namely, no macroscopic clusters appear before the critical time, while after the critical time almost all mass is concentrated in a single cluster. The order of maximal cluster size for times prior to critical is obtained. If velocities are large enough, then macroscopic clusters appear right after the beginning of system's life, but complete aggregation does not occur within finite time.
@article{ZNSL_2004_311_a8,
     author = {L. V. Kuoza and M. A. Lifshits},
     title = {Aggregation in one-dimensional gas model with stable initial data},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {161--178},
     year = {2004},
     volume = {311},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a8/}
}
TY  - JOUR
AU  - L. V. Kuoza
AU  - M. A. Lifshits
TI  - Aggregation in one-dimensional gas model with stable initial data
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 161
EP  - 178
VL  - 311
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a8/
LA  - ru
ID  - ZNSL_2004_311_a8
ER  - 
%0 Journal Article
%A L. V. Kuoza
%A M. A. Lifshits
%T Aggregation in one-dimensional gas model with stable initial data
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 161-178
%V 311
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a8/
%G ru
%F ZNSL_2004_311_a8
L. V. Kuoza; M. A. Lifshits. Aggregation in one-dimensional gas model with stable initial data. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 161-178. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a8/

[1] V. V. Vysotskii, “Energiya i klastery v sistemakh neuprugikh prityagivayuschikhsya chastits”, Teoriya veroyatn. i ee primen. (to appear)

[2] V. V. Godovanchuk, “Veroyatnosti bolshikh uklonenii dlya summ nezavisimykh sluchainykh velichin, prinadlezhaschikh oblasti prityazheniya ustoichivogo zakona”, Teoriya veroyatn. i ee primen., 23:3 (1978), 624–630 | MR | Zbl

[3] I. F. Pinelis, “Odna zadacha o bolshikh ukloneniyakh v prostranstve traektorii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 73–87 | MR | Zbl

[4] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–237 | MR

[5] A. V. Skorokhod, “O predelnom perekhode ot posledovatelnosti summ nezavisimykh sluchainykh velichin k odnorodnomu sluchainomu protsessu s nezavisimymi prirascheniyami”, Dokl. AN SSSR, 104 (1955), 364–367 | Zbl

[6] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, 2-e izd., Nauka, M., 1986 | MR

[7] T. Suidan, “Odnomernyi gravitatsionno vzaimodeistvuyuschii gaz i vypuklaya minoranta brounovskogo dvizheniya”, Uspekhi matem. nauk, 56:4 (2001), 73–96 | MR | Zbl

[8] S. G. Tkachuk, “Teoremy o bolshikh ukloneniyakh v sluchae raspredelenii s pravilno menyayuschimisya khvostami”, Sluchainye protsessy i stat. vyvody, 5, FAN, Tashkent, 1975, 164–174

[9] J. Bertoin, “Structure of shocks in Burgers equation with stable noise initial data”, J. Stat. Phys., 203 (1999), 729–741 | MR | Zbl

[10] J. Bertoin, “Some properties of Burgers turbulence with white or stable noise initial data”, Lévy processes – Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, S. I. Resnick, Birkhäuser, Boston, 2001, 267–279 | MR | Zbl

[11] W. E. Yu., G. Rykov, Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl

[12] C. Giraud, “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Statist. Phys., 105 (2001), 585–604 | DOI | MR | Zbl

[13] C. Giraud, “On regular points in Burgers turbulence with stable noise initial data”, Ann. Inst. H. Poincaré, 38 (2002), 229–251 | DOI | MR | Zbl

[14] C. C. Heyde, “On large deviation probabilities in the case of attraction to a nonnormal stable law”, Sankhyā Ser. A, 30:3 (1968), 253–258 | MR | Zbl

[15] M. A. Lifshits, Z. Shi, “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab. (to appear)

[16] Ph. A. Martin, J. Piasecki, “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Statist. Phys., 84 (1996), 837–857 | DOI | MR | Zbl

[17] Ya. B. Zeldovich, “Gravitational instability: an approximate theory for large density perturbations”, Astronom. Astrophys., 5 (1970), 84–89