@article{ZNSL_2004_311_a8,
author = {L. V. Kuoza and M. A. Lifshits},
title = {Aggregation in one-dimensional gas model with stable initial data},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {161--178},
year = {2004},
volume = {311},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a8/}
}
L. V. Kuoza; M. A. Lifshits. Aggregation in one-dimensional gas model with stable initial data. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 7, Tome 311 (2004), pp. 161-178. http://geodesic.mathdoc.fr/item/ZNSL_2004_311_a8/
[1] V. V. Vysotskii, “Energiya i klastery v sistemakh neuprugikh prityagivayuschikhsya chastits”, Teoriya veroyatn. i ee primen. (to appear)
[2] V. V. Godovanchuk, “Veroyatnosti bolshikh uklonenii dlya summ nezavisimykh sluchainykh velichin, prinadlezhaschikh oblasti prityazheniya ustoichivogo zakona”, Teoriya veroyatn. i ee primen., 23:3 (1978), 624–630 | MR | Zbl
[3] I. F. Pinelis, “Odna zadacha o bolshikh ukloneniyakh v prostranstve traektorii”, Teoriya veroyatn. i ee primen., 26:1 (1981), 73–87 | MR | Zbl
[4] Yu. V. Prokhorov, “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–237 | MR
[5] A. V. Skorokhod, “O predelnom perekhode ot posledovatelnosti summ nezavisimykh sluchainykh velichin k odnorodnomu sluchainomu protsessu s nezavisimymi prirascheniyami”, Dokl. AN SSSR, 104 (1955), 364–367 | Zbl
[6] A. V. Skorokhod, Sluchainye protsessy s nezavisimymi prirascheniyami, 2-e izd., Nauka, M., 1986 | MR
[7] T. Suidan, “Odnomernyi gravitatsionno vzaimodeistvuyuschii gaz i vypuklaya minoranta brounovskogo dvizheniya”, Uspekhi matem. nauk, 56:4 (2001), 73–96 | MR | Zbl
[8] S. G. Tkachuk, “Teoremy o bolshikh ukloneniyakh v sluchae raspredelenii s pravilno menyayuschimisya khvostami”, Sluchainye protsessy i stat. vyvody, 5, FAN, Tashkent, 1975, 164–174
[9] J. Bertoin, “Structure of shocks in Burgers equation with stable noise initial data”, J. Stat. Phys., 203 (1999), 729–741 | MR | Zbl
[10] J. Bertoin, “Some properties of Burgers turbulence with white or stable noise initial data”, Lévy processes – Theory and Applications, eds. O. E. Barndorff-Nielsen, T. Mikosch, S. I. Resnick, Birkhäuser, Boston, 2001, 267–279 | MR | Zbl
[11] W. E. Yu., G. Rykov, Ya. G. Sinai, “Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics”, Comm. Math. Phys., 177 (1996), 349–380 | DOI | MR | Zbl
[12] C. Giraud, “Clustering in a self-gravitating one-dimensional gas at zero temperature”, J. Statist. Phys., 105 (2001), 585–604 | DOI | MR | Zbl
[13] C. Giraud, “On regular points in Burgers turbulence with stable noise initial data”, Ann. Inst. H. Poincaré, 38 (2002), 229–251 | DOI | MR | Zbl
[14] C. C. Heyde, “On large deviation probabilities in the case of attraction to a nonnormal stable law”, Sankhyā Ser. A, 30:3 (1968), 253–258 | MR | Zbl
[15] M. A. Lifshits, Z. Shi, “Aggregation rates in one-dimensional stochastic systems with adhesion and gravitation”, Ann. Probab. (to appear)
[16] Ph. A. Martin, J. Piasecki, “Aggregation dynamics in a self-gravitating one-dimensional gas”, J. Statist. Phys., 84 (1996), 837–857 | DOI | MR | Zbl
[17] Ya. B. Zeldovich, “Gravitational instability: an approximate theory for large density perturbations”, Astronom. Astrophys., 5 (1970), 84–89